Statistical test for dynamical nonstationarity in observed time-series data

被引:69
作者
Kennel, MB
机构
[1] Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-8088
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 01期
关键词
D O I
10.1103/PhysRevE.56.316
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Information in the time distribution of points in a state space reconstructed from observed data yields a test for ''nonstationarity.'' Framed in terms of a statistical hypothesis test, this numerical algorithm can discern whether some underlying slow changes in parameters have taken place. The method examines a fundamental object in nonlinear dynamics; the geometry of orbits in state space, with corrections to overcome difficulties in real dynamical data which cause naive statistics to fail.
引用
收藏
页码:316 / 321
页数:6
相关论文
共 16 条
  • [1] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [2] MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA
    BROWN, R
    RULKOV, NF
    TRACY, ER
    [J]. PHYSICAL REVIEW E, 1994, 49 (05) : 3784 - 3800
  • [3] CASDAGLI M, 1991, J R STAT SOC B, V54, P303
  • [4] SELF-ORGANIZATION AND CHAOS IN A FLUIDIZED-BED
    DAW, CS
    FINNEY, CEA
    VASUDEVAN, M
    VANGOOR, NA
    NGUYEN, K
    BRUNS, DD
    KOSTELICH, EJ
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (12) : 2308 - 2311
  • [5] INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION
    FRASER, AM
    SWINNEY, HL
    [J]. PHYSICAL REVIEW A, 1986, 33 (02): : 1134 - 1140
  • [6] Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
  • [7] A TEST FOR STATIONARITY: FINDING PARTS IN TIME SERIES APT FOR CORRELATION DIMENSION ESTIMATES
    Isliker, Heinz
    Kurths, Juergen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06): : 1573 - 1579
  • [8] QUANTIFYING THE CLOSENESS OF FRACTAL MEASURES
    KANTZ, H
    [J]. PHYSICAL REVIEW E, 1994, 49 (06): : 5091 - 5097
  • [9] DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION
    KENNEL, MB
    BROWN, R
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW A, 1992, 45 (06): : 3403 - 3411
  • [10] MATTHEW B, UNPUB