Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

被引:51
作者
Casson, F. J. [1 ]
McDermott, R. M. [1 ]
Angioni, C. [1 ]
Camenen, Y. [2 ]
Dux, R. [1 ]
Fable, E. [1 ]
Fischer, R. [1 ]
Geiger, B. [1 ]
Manas, P. [2 ]
Menchero, L. [1 ,3 ]
Tardini, G. [1 ]
机构
[1] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
[2] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France
[3] Univ Strathclyde, Dept Phys, ADAS, Glasgow G4 0NG, Lanark, Scotland
基金
欧盟地平线“2020”;
关键词
TURBULENCE; TOKAMAK; CODE; SIMULATIONS; PARTICLE;
D O I
10.1088/0029-5515/53/6/063026
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.
引用
收藏
页数:15
相关论文
共 63 条
[1]   Non-adiabatic passing electron response and outward impurity convection in gyrokinetic calculations of impurity transport in ASDEX upgrade plasmas [J].
Angioni, C. ;
Dux, R. ;
Fable, E. ;
Peeters, A. G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12) :2027-2043
[2]   Direction of impurity pinch and auxiliary heating in tokamak plasmas [J].
Angioni, C ;
Peeters, AG .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[3]   Density peaking, anomalous pinch, and collisionality in tokamak plasmas [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :4-205003
[4]   Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects [J].
Angioni, C. ;
Camenen, Y. ;
Casson, F. J. ;
Fable, E. ;
McDermott, R. M. ;
Peeters, A. G. ;
Rice, J. E. .
NUCLEAR FUSION, 2012, 52 (11)
[5]   Intrinsic Toroidal Rotation, Density Peaking, and Turbulence Regimes in the Core of Tokamak Plasmas [J].
Angioni, C. ;
McDermott, R. M. ;
Casson, F. J. ;
Fable, E. ;
Bottino, A. ;
Dux, R. ;
Fischer, R. ;
Podoba, Y. ;
Puetterich, T. ;
Ryter, F. ;
Viezzer, E. .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[6]   Gyrokinetic modelling of electron and boron density profiles of H-mode plasmas in ASDEX Upgrade [J].
Angioni, C. ;
McDermott, R. M. ;
Fable, E. ;
Fischer, R. ;
Puetterich, T. ;
Ryter, F. ;
Tardini, G. .
NUCLEAR FUSION, 2011, 51 (02)
[7]   Particle transport in tokamak plasmas, theory and experiment [J].
Angioni, C. ;
Fable, E. ;
Greenwald, M. ;
Maslov, M. ;
Peeters, A. G. ;
Takenaga, H. ;
Weisen, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[8]   Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling [J].
Angioni, C. ;
Peeters, A. G. ;
Pereverzev, G. V. ;
Bottino, A. ;
Candy, J. ;
Dux, R. ;
Fable, E. ;
Hein, T. ;
Waltz, R. E. .
NUCLEAR FUSION, 2009, 49 (05)
[9]   A perturbative solution of the drift kinetic equation yields pinch type convective terms in the particle and energy fluxes for strong electrostatic turbulence [J].
Baker, DR .
PHYSICS OF PLASMAS, 2004, 11 (03) :992-996
[10]   Full linearized Fokker-Planck collisions in neoclassical transport simulations [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)