Modeling the performance of an ideal NaBH4-H2O2 direct borohydride fuel cell

被引:22
作者
Stroman, Richard O. [1 ,2 ]
Jackson, Gregory S. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] US Naval Res Lab, Div Chem, Washington, DC 20375 USA
关键词
Fuel cell; Borohydride; Design; Transport; Power density; Fuel utilization; SODIUM-BOROHYDRIDE; OXIDATION; MEMBRANES; ELECTRODES; TRANSPORT; WATER; PARAMETERS; KINETICS; ION; H+;
D O I
10.1016/j.jpowsour.2013.08.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A 2D direct borohydride fuel cell (DBFC) model has been developed to explore the prospective performance of this technology, for a cell with fast selective electrocatalysts and a selective membrane. In the modeled DBFC, a Nafion membrane in the Na+ form separates flow channels with aqueous fuel (0.1 -0.5 M NaBH4/4 M NaOH) and oxidizer (4 M H2O2/4 M H2SO4). Electrochemical reactions occur on catalyst-coated channel walls. The electrocatalysts are selective for complete BH4- oxidation and H2O2 reduction, the reactions have fast forward rate constants, and only Na+ and H2O cross the membrane. The model captures interfacial charge transfer reactions and complex transport in the flow channels and membrane. Results show that current density and voltage efficiency vary by >50% from inlet to outlet due to concentration boundary layer development. The BH4- concentration boundary layer limits peak power density, despite migration and fuel utilizations below 10%. Power density increases with BH4- inlet concentration and fuel flow rate, but at the expense of lower fuel utilization. Water crosses the membrane up to 14 times its production rate at the anode. Low fuel utilization and water imbalance suggest the importance of system designs with reactant recirculation and water recovery. Published by Elsevier B.V.
引用
收藏
页码:756 / 769
页数:14
相关论文
共 54 条
[1]   A novel high power density borohydride-air cell [J].
Amendola, SC ;
Onnerud, P ;
Kelly, MT ;
Petillo, PJ ;
Sharp-Goldman, SL ;
Binder, M .
JOURNAL OF POWER SOURCES, 1999, 84 (01) :130-133
[2]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[3]   Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium [J].
Cao, Dianxue ;
Sun, Limei ;
Wang, Guiling ;
Lv, Yanzhuo ;
Zhang, Milin .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 621 (01) :31-37
[4]   Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode [J].
Cheng, H ;
Scott, K .
ELECTROCHIMICA ACTA, 2006, 51 (17) :3429-3433
[5]   Evaluation of new ion exchange membranes for direct borohydride fuel cells [J].
Cheng, H. ;
Scott, K. ;
Lovell, Kx ;
Horsfall, J. A. ;
Waring, S. C. .
JOURNAL OF MEMBRANE SCIENCE, 2007, 288 (1-2) :168-174
[6]   Influence of operation conditions on direct borohydride fuel cell performance [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :407-412
[7]   Factors influencing decomposition of H2O2 over supported Pd catalyst in aqueous medium [J].
Choudhary, V. R. ;
Samanta, C. ;
Choudhary, T. V. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 260 (1-2) :115-120
[8]   Physicochemical Transport Properties of Aqueous Sodium Metaborate Solutions for Sodium Borohydride Hydrogen Generation and Storage and Fuel Cell Applications. [J].
Cloutier, Caroline R. ;
Alfantazi, Akram ;
Gyenge, Elod .
THERMEC 2006 SUPPLEMENT: 5TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2007, 15-17 :267-274
[9]   Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media. Part I: Bulk electrodes [J].
Concha, B. Molina ;
Chatenet, M. .
ELECTROCHIMICA ACTA, 2009, 54 (26) :6119-6129
[10]   A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode [J].
de Leon, C. Ponce ;
Walsh, F. C. ;
Patrissi, C. J. ;
Medeiros, M. G. ;
Bessette, R. R. ;
Reeve, R. W. ;
Lakeman, J. B. ;
Rose, A. ;
Browning, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) :1610-1613