Noise Measurements of Discrete HEMT Transistors and Application to Wideband Very Low-Noise Amplifiers

被引:45
作者
Akgiray, Ahmed H. [1 ]
Weinreb, Sander [1 ]
Leblanc, Remy [2 ]
Renvoise, Michel [2 ]
Frijlink, Peter [2 ]
Lai, Richard [3 ]
Sarkozy, Stephen [3 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[2] OMMIC, F-94453 Limeil Brevannes, France
[3] Northrop Grumman Corp, Redondo Beach, CA 90278 USA
关键词
Broadband amplifiers; cryogenics; gallium-arsenide (GaAs); indium-phosphide (InP); low-noise amplifiers (LNAs); microwave amplifiers; monolithic microwave integrated circuits (MMICs); radio astronomy; IMPACT IONIZATION; TEMPERATURE; PARAMETERS;
D O I
10.1109/TMTT.2013.2273757
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The noise models of InP and GaAs HEMTs are compared with measurements at both 300 and 20 K. The critical parameter, T-drain, in the Pospieszalski noise model is determined as a function of drain current by measurements of the 1-GHz noise of discrete transistorswith 50-Omega generator impedance. The dc I-V for the transistors under test are presented and effects of impact-ionization are noted. InP devices with both 100% and 75% indium mole fraction in channel are included. Examples of the design and measurement of very wideband low-noise amplifiers (LNAs) using the tested transistors are presented. At 20-K physical temperature the GaAs LNA achieves <10-K noise over the 0.7-16-GHz range with 16 mW of power and an InP LNA measures <20-K noise over the 6-50-GHz range with 30 mW of power.
引用
收藏
页码:3285 / 3297
页数:13
相关论文
共 50 条
[41]   Ka-Band High-Linearity and Low-Noise Gallium Nitride MMIC Amplifiers for Spaceborne Telecommunications [J].
Longhi, Patrick Ettore ;
Ciccognani, Walter ;
Colangeli, Sergio ;
Limiti, Ernesto .
IEEE ACCESS, 2023, 11 :22124-22135
[42]   Cryogenic W-Band SiGe BiCMOS Low-Noise Amplifier [J].
Varonen, Mikko ;
Sheikhipoor, Nima ;
Gabritchidze, Bekari ;
Cleary, Kieran ;
Forsten, Henrik ;
Ruecker, Holger ;
Kaynak, Mehmet .
PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2020, :185-188
[43]   Excess noise factor measurement for low-noise high-speed avalanche photodiodes [J].
Liu, Yijun ;
Yang, Xiaohong ;
Wang, Rui ;
Tang, Yongsheng .
PHYSICA SCRIPTA, 2023, 98 (10)
[44]   The Modification Design of Low-noise Locomotive Traction Gear [J].
Sun, Jianping ;
Tang, Zhaoping ;
Liu, Zhongwei ;
Zhou, Xinjian .
PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 :1433-+
[45]   Sb-Based Low-Noise Avalanche Photodiodes [J].
Campbell, Joe C. ;
David, John P. R. ;
Bank, Seth R. .
PHOTONICS, 2023, 10 (07)
[46]   Innovative techniques for achieving flat response in a dual-resonance ultra-wideband low-noise amplifier [J].
Reddy, T. Snehitha ;
Nath, Vijay .
PHYSICA SCRIPTA, 2024, 99 (08)
[47]   Low-Noise Staircase, Tunneling, and Conventional Avalanche Photodetectors [J].
Bank, Seth R. .
2017 75TH ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2017,
[48]   Ultra Low Noise Cryogenic Amplifiers for Radio Astronomy [J].
Bryerton, E. W. ;
Morgan, M. ;
Pospieszalski, M. W. .
2013 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2013, :358-360
[49]   A Wideband 60-100 GHz GaAs Low-Noise Amplifier as a Pre-Amplifier to a CMOS Receiver [J].
Ryynanen, Kaisa ;
Stadius, Kari ;
Bergman, Jan ;
Kaval, Goksu ;
Lasser, Gregor ;
Vassilev, Vessen ;
Fager, Christian ;
Ryynanen, Jussi .
2024 31ST IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, ICECS, 2024,
[50]   Low-Noise Resonant Tunneling Diode Terahertz Detector [J].
Clochiatti, Simone ;
Grygoriev, Anton ;
Kress, Robin ;
Mutlu, Enes ;
Possberg, Alexander ;
Vogelsang, Florian ;
van Delden, Marcel ;
Pohl, Nils ;
Weimann, Nils G. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2025, 15 (01) :107-119