Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

被引:136
|
作者
Cheng, Chia-Chin [1 ]
Lu, Ang-Yu [2 ]
Tseng, Chien-Chih [2 ]
Yang, Xiulin [2 ]
Hedhili, Mohamed Nejib [2 ]
Chen, Min-Cheng [3 ]
Wei, Kung-Hwa [1 ]
Li, Lain-Jong [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Natl Appl Res Labs, Nat Nano Device Labs, Hsinchu 300, Taiwan
关键词
Hydrogen evolution reaction; MoS2; Electrolysis; Catalysis; Transition metal dichalcogenides; EDGE SITES; EFFICIENT ELECTROCATALYST; ULTRATHIN NANOSHEETS; CARBON CLOTH; EVOLUTION; NANOPARTICLES; GROWTH; GRAPHENE; LAYERS;
D O I
10.1016/j.nanoen.2016.09.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach using a remote hydrogen-plasma process to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H-2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:846 / 852
页数:7
相关论文
共 50 条
  • [11] Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers
    Dagan, R.
    Vaknin, Y.
    Henning, A.
    Shang, J. Y.
    Lauhon, L. J.
    Rosenwaks, Y.
    APPLIED PHYSICS LETTERS, 2019, 114 (10)
  • [12] Mechanical bending induced catalytic activity enhancement of monolayer 1 T'-MoS2 for hydrogen evolution reaction
    Shi, Wenwu
    Wang, Zhiguo
    Fu, Yong Qing
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (09)
  • [13] Activating the MoS2 Basal Plane by Controllable Fabrication of Pores for an Enhanced Hydrogen Evolution Reaction
    Geng, Shuo
    Liu, Hu
    Yang, Weiwei
    Yu, Yong Sheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (71) : 19075 - 19080
  • [14] Activating the Electrocatalysis of MoS2 Basal Plane for Hydrogen Evolution via Atomic Defect Configurations
    Liu, Xiao
    Jiang, Xingxing
    Shao, Gonglei
    Xiang, Haiyan
    Li, Zhiwei
    Jin, Yuanyuan
    Chen, Yang
    Jiang, Huili
    Li, Huimin
    Shui, Jianglan
    Feng, Yexin
    Liu, Song
    SMALL, 2022, 18 (22)
  • [15] Electrochemical Control of Photoluminescence in Two-Dimensional MoS2 Nanoflakes
    Wang, Yichao
    Ou, Jian Zhen
    Balendhran, Sivacarendran
    Chrimes, Adam F.
    Mortazavi, Majid
    Yao, David D.
    Field, Matthew R.
    Latham, Kay
    Bansal, Vipul
    Friend, James R.
    Zhuiykov, Serge
    Medhekar, Nikhil V.
    Strano, Michael S.
    Kalantar-zadeh, Kourosh
    ACS NANO, 2013, 7 (11) : 10083 - 10093
  • [16] Activating MoS2 basal planes for hydrogen evolution through the As doping and strain
    Yang, Yi-Qi
    Zhao, Chun-Xiang
    Bai, Shou-Yan
    Wang, Cai-Ping
    Niu, Chun-Yao
    PHYSICS LETTERS A, 2019, 383 (24) : 2997 - 3000
  • [17] Local Structure of Sulfur Vacancies on the Basal Plane of Monolayer MoS2
    Garcia-Esparza, Angel T.
    Park, Sangwook
    Abroshan, Hadi
    Mellone, Oscar A. Paredes
    Vinson, John
    Abraham, Baxter
    Kim, Taeho R.
    Nordlund, Dennis
    Gallo, Alessandro
    Alonso-Mori, Roberto
    Zheng, Xiaolin
    Sokaras, Dimosthenis
    ACS NANO, 2022, 16 (04) : 6725 - 6733
  • [18] Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
    Shi, Wenwu
    Wu, Shiyun
    Wang, Zhiguo
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (10)
  • [19] Functionalization of the MoS2 basal plane for activation of molecular hydrogen by Pd deposition
    Ozaki, Fumihiko
    Tanaka, Shunsuke
    Osada, Wataru
    Mukai, Kozo
    Horio, Masafumi
    Koitaya, Takanori
    Yamamoto, Susumu
    Matsuda, Iwao
    Yoshinobu, Jun
    APPLIED SURFACE SCIENCE, 2022, 593
  • [20] In situ growth of MoS2 on carbon nanofibers with enhanced electrochemical catalytic activity for the hydrogen evolution
    Li, Anna
    Hu, Yuzhe
    Yu, Muping
    Liu, Xiaowang
    Li, Maoguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 9419 - 9427