Internal energy and entropy of a quantum pseudodot

被引:22
作者
Khordad, R. [1 ]
Mirhosseini, B. [1 ]
机构
[1] Univ Yasuj, Coll Sci, Dept Phys, Yasuj 75914353, Iran
关键词
Quantum pseudodot; Entropy; Magnetic field; Internal energy; BOLTZMANN-GIBBS STATISTICS; HYDROGENIC DONOR; HEAT; DOT; PRESSURE; SYSTEM;
D O I
10.1016/j.physb.2013.03.030
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the present work, the entropy and internal energy of a GaAs quantum pseudodot in the presence of an applied magnetic field is studied. For this purpose, the Tsallis formalism is used to obtain internal energy and entropy. It is found that entropy and internal energy are continuous function and they are zero at special temperatures. Entropy maximum increases with increasing pseudodot radius. Internal energy increases by increasing magnetic field. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 14
页数:5
相关论文
共 31 条
[1]  
[Anonymous], 1959, The Conceptual Foundations of the Statistical Approach in Mechanics
[2]  
[Anonymous], 1996, Statistical mechanics
[3]  
[Anonymous], 1991, THERMODYNAMICS STAT
[4]   Study of the Specific Heat of a Hydrogenic Donor Impurity at the Center of a Spherical Quantum Dot in Contact with a Heat Reservoir [J].
Barati, M. ;
Moradi, N. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (07) :1709-1713
[5]  
Boltzmann L., 1877, ANN PHYS, VII, P67
[6]   A quantum pseudodot system with a two-dimensional pseudoharmonic potential [J].
Cetin, A. .
PHYSICS LETTERS A, 2008, 372 (21) :3852-3856
[7]   Displacement operator for quantum systems with position-dependent mass [J].
Costa Filho, R. N. ;
Almeida, M. P. ;
Farias, G. A. ;
Andrade, J. S., Jr. .
PHYSICAL REVIEW A, 2011, 84 (05)
[8]   Morse potential derived from first principles [J].
Costa Filho, Raimundo N. ;
Alencar, Geova ;
Skagerstam, Bo-Sture ;
Andrade, Jose S., Jr. .
EPL, 2013, 101 (01)
[9]   SPECIFIC-HEAT OF A FREE PARTICLE IN A GENERALIZED BOLTZMANN-GIBBS STATISTICS [J].
DASILVA, EP ;
TSALLIS, C ;
CURADO, EMF .
PHYSICA A, 1993, 199 (01) :137-153
[10]  
Ebeling W., 2005, STAT THERMODYNAMICS, P3