Bound on the diameter of metacyclic groups

被引:0
|
作者
Rajeevsarathy, Kashyap [1 ]
Sarkar, Siddhartha [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal Bypass Rd, Bhopal 462066, Madhya Pradesh, India
关键词
Split metacyclic groups; diameter; finite rings; finite fields; CAYLEY-GRAPHS;
D O I
10.1142/S0219498820502199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(m,n,k) = Z(m) proportional to(k) Z(n) be the split metacyclic group, where k is a unit modulo n. We derive an upper bound for the diameter of G(m,n,k) using an arithmetic parameter called the weight, which depends on n, k, and the order of k. As an application, we show how this would determine a bound on the diameter of an arbitrary metacyclic group.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The Sharp Diameter Bound of Stable Minimal SurfacesThe Sharp Diameter BoundQ. Hu et al.
    Qixuan Hu
    Guoyi Xu
    Shuai Zhang
    The Journal of Geometric Analysis, 2025, 35 (7)
  • [32] Sharp upper bound on the Sombor index of bipartite graphs with a given diameter
    Zhen Wang
    Fang Gao
    Duoduo Zhao
    Hechao Liu
    Journal of Applied Mathematics and Computing, 2024, 70 : 27 - 46
  • [33] Sharp upper bound on the Sombor index of bipartite graphs with a given diameter
    Wang, Zhen
    Gao, Fang
    Zhao, Duoduo
    Liu, Hechao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 27 - 46
  • [34] AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN
    CHUNG, FRK
    FABER, V
    MANTEUFFEL, TA
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 443 - 457
  • [35] Using the minimum and maximum degrees to bound the diameter of orientations of bridgeless graphs
    Zhang, Wan-Ping
    Meng, Ji-Xiang
    Wu, Baoyindureng
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [36] SMALL DIAMETER SYMMETRICAL NETWORKS FROM LINEAR-GROUPS
    CAMPBELL, L
    CARLSSON, GE
    DINNEEN, MJ
    FABER, V
    FELLOWS, MR
    LANGSTON, MA
    MOORE, JW
    MULLHAUPT, AP
    SEXTON, HB
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (02) : 218 - 220
  • [37] Cayley graphs of diameter two and any degree with order half of the Moore bound
    Abas, Marcel
    DISCRETE APPLIED MATHEMATICS, 2014, 173 : 1 - 7
  • [38] A tight lower bound for computing the diameter of a 3D convex polytope
    Fournier, Herve
    Vigneron, Antoine
    ALGORITHMICA, 2007, 49 (03) : 245 - 257
  • [39] A Tight Lower Bound for Computing the Diameter of a 3D Convex Polytope
    Hervé Fournier
    Antoine Vigneron
    Algorithmica, 2007, 49 : 245 - 257
  • [40] A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter
    Qi, Linming
    Miao, Lianying
    Zhao, Weiliang
    Liu, Lu
    MATHEMATICS, 2022, 10 (08)