The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas

被引:6
作者
Anderson, Ian M. [1 ]
Fels, Mark E. [1 ]
机构
[1] Utah State Univ, Logan, UT 84322 USA
关键词
Cauchy problem; Darboux integrability; exterior differential systems; d'Alembert's formula; EXTERIOR DIFFERENTIAL-SYSTEMS;
D O I
10.3842/SIGMA.2013.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of Lie type for the Vessiot group G. If the Vessiot group G is solvable then the Cauchy problem can be solved by quadratures. This allows us to give explicit integral formulas, similar to the well known d'Alembert's formula for the wave equation, to the initial value problem with generic non-characteristic initial data.
引用
收藏
页数:22
相关论文
共 16 条
[1]   Symmetry Reduction of Exterior Differential Systems and Backlund Transformations for PDE in the Plane [J].
Anderson, I. M. ;
Fels, M. E. .
ACTA APPLICANDAE MATHEMATICAE, 2012, 120 (01) :29-60
[2]  
Anderson I.M., ARXIV11085443
[3]   Superposition formulas for exterior differential systems [J].
Anderson, Ian M. ;
Fels, Mark E. ;
Vassiliou, Peter J. .
ADVANCES IN MATHEMATICS, 2009, 221 (06) :1910-1963
[4]   Exterior differential systems with symmetry [J].
Anderson, IM ;
Fels, ME .
ACTA APPLICANDAE MATHEMATICAE, 2005, 87 (1-3) :3-31
[5]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[6]  
[Anonymous], 1995, IAS/Park City Math. Ser., DOI DOI 10.1090/PCMS/001/02
[7]  
Bryant R., 1995, SEL MATH, V1, P21, DOI [10.1007/BF01614073, DOI 10.1007/BF01614073]
[8]  
Bryant R.L., 1991, MATH SCI RES I PUBLI
[9]   CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL-SYSTEMS .2. CONSERVATION-LAWS FOR A CLASS OF PARABOLIC EQUATIONS [J].
BRYANT, RL ;
GRIFFITHS, PA .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (03) :531-676
[10]   Superposition rules, lie theorem, and partial differential equations [J].
Carinena, Jose F. ;
Grabowski, Janusz ;
Marmo, Giuseppe .
REPORTS ON MATHEMATICAL PHYSICS, 2007, 60 (02) :237-258