Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5

被引:27
作者
Borodin, Oleg V. [1 ,2 ]
Ivanova, Anna O. [3 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Ammosov North Eastern Fed Univ, Inst Math, Yakutsk 677891, Russia
基金
俄罗斯基础研究基金会;
关键词
Planar graph; Plane map; Structural property; Star; Weight; GRAPHS;
D O I
10.1016/j.disc.2013.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lebesgue (1940) [13] proved that each plane normal map M-5 with minimum degree 5 has a 5-vertex such that the degree-sum (the weight) of its every four neighbors is at most 26. In other words, every M-5 has a 4-star of weight at most 31 centered at a 5-vertex. Borodin-Woodall (1998) [3] improved this 31 to the tight bound 30. We refine the tightness of Borodin-Woodall's bound 30 by presenting six M(5)s such that (1) every 4-star at a 5-vertex in them has weight at least 30 and (2) for each of the six possible types (5, 5, 5, 10), (5, 5, 6, 9), (5, 5, 7, 8), (5, 6, 6, 8), (5, 6, 7, 7), and (6, 6, 6, 7) of 4-stars with weight 30, the 4-stars of this type at 5-vertices appear in precisely one of these six M5S. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1710 / 1714
页数:5
相关论文
共 14 条
  • [1] Covering planar graphs with forests
    Balogh, J
    Kochol, M
    Pluhár, A
    Yu, XX
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 147 - 158
  • [2] BORODIN O, 1992, MATH NACHR, V158, P109
  • [3] Borodin O.V., 5 STARS LOW WE UNPUB
  • [4] Borodin O.V., 1998, DISCUSS MATH GRAPH T, V18, P159, DOI DOI 10.7151/DMGT.1071
  • [5] Describing (d-2)-stars at d-vertices, d ≤ 5, in normal plane maps
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (17) : 1700 - 1709
  • [6] BORODIN OV, 2001, DISKRETN ANAL ISSL 1, V8, P9
  • [7] BORODIN OV, 2001, DISKRETN ANAL ISSLED, V8, P15
  • [8] The four color problem
    Franklin, P
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1922, 44 : 225 - 236
  • [9] On the existence of specific stars in planar graphs
    Harant, Jochen
    Jendrol, Stanislav
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (05) : 529 - 543
  • [10] Light subgraphs of graphs embedded in the plane-A survey
    Jendrol', S.
    Voss, H. -J.
    [J]. DISCRETE MATHEMATICS, 2013, 313 (04) : 406 - 421