Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: Prediction of microRNA regulation by PDGF during osteogenesis

被引:80
作者
Goff, Loyal A. [2 ,3 ]
Boucher, Shayne [1 ]
Ricupero, Christopher L. [2 ,3 ]
Fenstermacher, Sara [2 ,3 ]
Swerdel, Mavis [2 ,3 ]
Chase, Lucas G. [1 ]
Adams, Christopher C. [1 ]
Chesnut, Jonathan [1 ]
Lakshmipathy, Uma [1 ]
Hart, Ronald P. [2 ,3 ]
机构
[1] Invitrogen Corp, Stem Cells & Regenerat Med, Carlsbad, CA 92008 USA
[2] Rutgers State Univ, WM Keck Ctr Collaborat Neurosci, Piscataway, NJ USA
[3] Rutgers State Univ, Rutgers Stem Cell Res Ctr, Piscataway, NJ USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1016/j.exphem.2008.05.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression. Materials and Methods. Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling. Results. The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition. Conclusion. Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
引用
收藏
页码:1354 / 1369
页数:16
相关论文
共 74 条
[1]   Autologous mesenchymal stem cell-mediated repair of tendon [J].
Awad, HA ;
Butler, DL ;
Boivin, GP ;
Smith, FNL ;
Malaviya, P ;
Huibregtse, B ;
Caplan, AI .
TISSUE ENGINEERING, 1999, 5 (03) :267-277
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[4]   Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2 [J].
Bianchi, G ;
Banfi, A ;
Mastrogiacomo, M ;
Notaro, R ;
Luzzatto, L ;
Cancedda, R ;
Quarto, R .
EXPERIMENTAL CELL RESEARCH, 2003, 287 (01) :98-105
[5]   Bone marrow stromal stem cells: Nature, biology, and potential applications [J].
Bianco, P ;
Riminucci, M ;
Gronthos, S ;
Robey, PG .
STEM CELLS, 2001, 19 (03) :180-192
[6]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
[7]  
2-F
[8]   Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells [J].
Bruder, SP ;
Kurth, AA ;
Shea, M ;
Hayes, WC ;
Jaiswal, N ;
Kadiyala, S .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :155-162
[9]   Assessing self-renewal and differentiation in human embryonic stem cell lines [J].
Cai, Jingli ;
Chen, Jia ;
Liu, Ying ;
Miura, Takumi ;
Luo, Yongquan ;
Loring, Jeanne F. ;
Freed, William J. ;
Rao, Mahendra S. ;
Zeng, Xianmin .
STEM CELLS, 2006, 24 (03) :516-530
[10]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004