Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between

被引:9
作者
De Vos, Alexis [1 ]
De Baerdemacker, Stijn [2 ]
机构
[1] Univ Ghent, Dept Elect & Informat Sysy, B-9000 Ghent, Belgium
[2] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
来源
SYMMETRY-BASEL | 2011年 / 3卷 / 02期
关键词
reversible computing; quantum computing; group theory;
D O I
10.3390/sym3020305
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qu)bit, the transformation being controlled by the other w-1 (qu)bits. We explain why the former circuit can be decomposed into 2w - 1 control gates, whereas the latter circuit needs 2(w) - 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w - 1 or into 2(w) - 1 control gates.
引用
收藏
页码:305 / 324
页数:20
相关论文
共 31 条
[1]  
[Anonymous], 2010, REVERSIBLE COMPUTING, DOI DOI 10.1002/9783527633999
[2]  
[Anonymous], IBM J RES DEV
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]   Quantum circuits with uniformly controlled one-qubit gates -: art. no. 052330 [J].
Bergholm, V ;
Vartiainen, JJ ;
Möttönen, M ;
Salomaa, MM .
PHYSICAL REVIEW A, 2005, 71 (05)
[5]  
Bhatia R., 1997, MATRIX ANAL, P195
[6]  
De Vos A., 2008, P 8 INT WORKSHOP BOO, P41
[7]  
De Vos A, 2008, INT J UNCONV COMPUT, V4, P79
[8]   Young subgroups for reversible computers [J].
De Vos, Alexis ;
Van Rentergem, Yvan .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (02) :183-200
[9]  
De Vos A, 2010, INT J UNCONV COMPUT, V6, P239
[10]   Machines, logic and quantum physics [J].
Deutsch, D ;
Ekert, A ;
Lupacchini, R .
BULLETIN OF SYMBOLIC LOGIC, 2000, 6 (03) :265-283