Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian

被引:4
作者
Liu, Senli [1 ]
Chen, Haibo [1 ]
Yang, Jie [1 ]
Su, Yu [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Fractional p-Laplacian; Kirchhoff function; Asymptotically linear; GROUND-STATE SOLUTIONS; MULTIPLE POSITIVE SOLUTIONS; BEHAVIOR;
D O I
10.1007/s13398-020-00893-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Kirchhoff type equation involving the fractional p-Laplacian: M (integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+sp) dxdy) (-Delta)(p)(s)u + lambda V (x) vertical bar u vertical bar(p-2) u = K (x) f (u), x is an element of R-N, where lambda is a real parameter, (-Delta)(s)(p) is the fractional p-Laplacian operator, with 0 < s < 1 < p < infinity and sp < N. Functions M, V and K satisfy some suitable conditions. For f is superlinear at infinity, we establish the existence of multiple solutions and infinitely many solutions to above equation, which extend the main result in Pucci et al. (Calc Var Partial Differ Equations 54:2785-2806, 2015). For f is asymptotically linear at infinity, we first study the influence of function K on the existence and nonexistence of solutions for the above equation, which complement the main result in Jia and Luo (J Math Anal Appl 467:893-915, 2018).
引用
收藏
页数:28
相关论文
共 41 条
[21]  
Pohozaev S., 1975, MAT SBORNIK, V96, P152
[22]  
Pohozaev S. I., 1975, MAT SBORNIK, V96, P168
[23]   Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations [J].
Pucci, Patrizia ;
Xiang, Mingqi ;
Zhang, Binlin .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) :27-55
[24]  
Pucci P, 2015, CALC VAR PARTIAL DIF, V54, P2785, DOI 10.1007/s00526-015-0883-5
[25]  
Rabinowitz P.H., 1986, REGIONAL C SERIES MA, V65
[26]   Ground state solutions for nonlinear fractional Schrodinger equations in RN [J].
Secchi, Simone .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
[27]   Multiplicity and concentration results for fractional Choquard equations: Doubly critical case [J].
Su, Yu ;
Wang, Li ;
Chen, Haibo ;
Liu, Senli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
[28]   New result for nonlinear Choquard equations: Doubly critical case [J].
Su, Yu .
APPLIED MATHEMATICS LETTERS, 2020, 102
[29]   Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent [J].
Su, Yu ;
Chen, Haibo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) :2063-2082
[30]   Positive solutions of a superlinear kirchhoff type equation in RN (N ≥ 4) [J].
Sun, Juntao ;
Cheng, Yi-hsin ;
Wu, Tsung-fang ;
Feng, Zhaosheng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 71 :141-160