Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian

被引:4
作者
Liu, Senli [1 ]
Chen, Haibo [1 ]
Yang, Jie [1 ]
Su, Yu [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Fractional p-Laplacian; Kirchhoff function; Asymptotically linear; GROUND-STATE SOLUTIONS; MULTIPLE POSITIVE SOLUTIONS; BEHAVIOR;
D O I
10.1007/s13398-020-00893-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Kirchhoff type equation involving the fractional p-Laplacian: M (integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+sp) dxdy) (-Delta)(p)(s)u + lambda V (x) vertical bar u vertical bar(p-2) u = K (x) f (u), x is an element of R-N, where lambda is a real parameter, (-Delta)(s)(p) is the fractional p-Laplacian operator, with 0 < s < 1 < p < infinity and sp < N. Functions M, V and K satisfy some suitable conditions. For f is superlinear at infinity, we establish the existence of multiple solutions and infinitely many solutions to above equation, which extend the main result in Pucci et al. (Calc Var Partial Differ Equations 54:2785-2806, 2015). For f is asymptotically linear at infinity, we first study the influence of function K on the existence and nonexistence of solutions for the above equation, which complement the main result in Jia and Luo (J Math Anal Appl 467:893-915, 2018).
引用
收藏
页数:28
相关论文
共 41 条
[1]   EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2009-2045
[2]  
[Anonymous], 2001, Adv. Differ. Equ
[3]  
Bernstein S., 1940, IZV AKAD NAUK SSSR M, V4, P17
[4]   Existence and asymptotic behavior of positive ground state solutions for coupled nonlinear fractional Kirchhoff-type systems [J].
Che, Guofeng ;
Chen, Haibo .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) :173-188
[5]   INFINITELY MANY SOLUTIONS OF SYSTEMS OF KIRCHHOFF-TYPE EQUATIONS WITH GENERAL POTENTIALS [J].
Che, Guofeng ;
Chen, Haibo .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) :2187-2209
[6]   New existence of multiple solutions for nonhomogeneous Schrodinger-Kirchhoff problems involving the fractional p-Laplacian with sign-changing potential [J].
Chen, Jianhua ;
Cheng, Bitao ;
Tang, Xianhua .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) :153-176
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
[9]   Existence results for fractional p-Laplacian problems via Morse theory [J].
Iannizzotto, Antonio ;
Liu, Shibo ;
Perera, Kanishka ;
Squassina, Marco .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (02) :101-125
[10]   Weyl-type laws for fractional p-eigenvalue problems [J].
Iannizzotto, Antonio ;
Squassina, Marco .
ASYMPTOTIC ANALYSIS, 2014, 88 (04) :233-245