FOCUSING mKdV BREATHER SOLUTIONS WITH NONVANISHING BOUNDARY CONDITION BY THE INVERSE SCATTERING METHOD

被引:17
作者
Alejo, Miguel A. [1 ]
机构
[1] Univ Bonn, Dept Theoret Biol, Bonn, Germany
关键词
mKdV equation; breather; inverse scattering; nonvanishing condition; POSEDNESS; EQUATION;
D O I
10.1142/S140292511250009X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Inverse Scattering Method with a nonvanishing boundary condition, we obtain an explicit breather solution with nonzero vacuum parameter b of the focusing modified Korteweg-de Vries (mKdV) equation. Moreover, taking the limiting case of zero frequency, we obtain a generalization of the double pole solution introduced by M. Wadati et al.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 20 条
[1]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[2]  
Alejo M.A., T AM MATH S IN PRESS
[3]  
Alejo M. A., ACTA APPL M IN PRESS
[4]  
Alejo M. A., 2011, ARXIV11096028V1MATHN
[5]   MODIFIED KDV SOLITONS WITH NON-ZERO VACUUM PARAMETER OBTAINABLE FROM THE ZS-AKNS INVERSE METHOD [J].
AUYEUNG, TC ;
FUNG, PCW ;
AU, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1425-1436
[6]   THE KORTEWEG-DEVRIES HIERARCHY AS DYNAMICS OF CLOSED CURVES IN THE PLANE [J].
GOLDSTEIN, RE ;
PETRICH, DM .
PHYSICAL REVIEW LETTERS, 1991, 67 (23) :3203-3206
[7]   Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity [J].
Grimshaw, R. ;
Slunyaev, A. ;
Pelinovsky, E. .
CHAOS, 2010, 20 (01)
[8]   INVERSE SCATTERING METHOD FOR NON-LINEAR EVOLUTION EQUATIONS UNDER NONVANISHING CONDITIONS [J].
KAWATA, T ;
INOUE, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (05) :1722-1729
[9]   On the ill-posedness of some canonical dispersive equations [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :617-633
[10]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620