ST-GNN for EEG Motor Imagery Classification

被引:5
作者
Vivek, B. S. [1 ]
Adarsh, A. [1 ]
Gubbi, J. [1 ]
Muralidharan, Kartik [1 ]
Ramakrishnan, Ramesh Kumar [1 ]
Pal, Arpan [1 ]
机构
[1] TCS Res, Bengaluru, Karnataka, India
来源
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22) | 2022年
关键词
Graph neural network; Motor-Imagery; EEG;
D O I
10.1109/BHI56158.2022.9926806
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain-computer interface (BCI) systems play an important role in medical applications such as stroke rehabilitation and neural prosthesis. These systems aim to decode the neural activity of the human brain measured using an Electroencephalogram (EEG). In this work, we consider the task of EEG-based motor imagery (intent) classification. Motor imagery (MI) refers to the imagination of the limb movement in the brain without actual action. Classification of motor imagery forms the basis for BCI-based prosthetic control. Existing approaches either use handcrafted features or features extracted from a deep neural network to interpret EEG-based MI. However, majority of the existing works fail to harness the functional connectivity within the brain that is captured using multiple EEG channels. In our work, we represent the input EEG signal as a graph where the nodes represent the EEG channels. The proposed approach uses a graph representation with a trainable weighted adjacency matrix to learn the optimal connectivity between nodes. Spatio-temporal features of the EEG signal are extracted via the proposed model that consists of a temporal convolution module and a graph convolution network. Experimental results and ablation study highlight the effectiveness of the proposed approach on the PhysioNet EEG motor movement and imagery dataset (EEG-MMIDB).
引用
收藏
页数:4
相关论文
共 16 条
[1]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[2]   Network neuroscience [J].
Bassett, Danielle S. ;
Sporns, Olaf .
NATURE NEUROSCIENCE, 2017, 20 (03) :353-364
[3]   Neurophysiological predictor of SMR-based BCI performance [J].
Blankertz, Benjamin ;
Sannelli, Claudia ;
Haider, Sebastian ;
Hammer, Eva M. ;
Kuebler, Andrea ;
Mueller, Klaus-Robert ;
Curio, Gabriel ;
Dickhaus, Thorsten .
NEUROIMAGE, 2010, 51 (04) :1303-1309
[4]   Volume Conduction Influences Scalp-Based Connectivity Estimates [J].
Brunner, Clemens ;
Billinger, Martin ;
Seeber, Martin ;
Mullen, Timothy R. ;
Makeig, Scott .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
[5]  
Dose H, 2018, EUR SIGNAL PR CONF, P1676, DOI 10.23919/EUSIPCO.2018.8553332
[6]  
Fallani F. D. V., 2010, Nonlinear Biomedical Physics, V4, P1
[7]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[8]   A comparison between scalp- and source-reconstructed EEG networks [J].
Lai, Margherita ;
Demuru, Matteo ;
Hillebrand, Arjan ;
Fraschini, Matteo .
SCIENTIFIC REPORTS, 2018, 8
[9]   EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces [J].
Lawhern, Vernon J. ;
Solon, Amelia J. ;
Waytowich, Nicholas R. ;
Gordon, Stephen M. ;
Hung, Chou P. ;
Lance, Brent J. .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (05)
[10]   Motor imagery [J].
Lotze, Martin ;
Halsband, Ulrike .
JOURNAL OF PHYSIOLOGY-PARIS, 2006, 99 (4-6) :386-395