Strategy to control CO2 diffusion in polystyrene microcellular foaming via CO2-philic additives

被引:30
|
作者
Qiang, Wei [1 ]
Hu, Dong-dong [1 ]
Liu, Tao [1 ]
Zhao, Ling [1 ,2 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Xinjiang Univ, Coll Chem & Chem Engn, Urumqi 830046, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Supercritical carbon dioxide; Diffusion; CO2-philic additives; Polystyrene; Microcellular foaming; DISSIPATIVE PARTICLE DYNAMICS; MOLECULAR-WEIGHT; SUPERCRITICAL FLUIDS; CARBON-DIOXIDE; COMPUTER-SIMULATION; POLY(VINYL ACETATE); POLYMER BLENDS; SOLUBILITY; TEMPERATURE; PRESSURE;
D O I
10.1016/j.supflu.2019.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of suitable CO2-philic additives, enabling high CO2 concentration retained in the polymer matrix, might be a promising strategy to obtain foams with small cell size and large volume expansion ratio. The effect of molecular weight (M-n) (2000-17000 g/mol) of CO2-philic additives (PDMS and PVAc) on the diffusion of supercritical CO2 into and out of polystyrene (PS) was investigated via experiments and dissipative particle dynamics simulations. The CO2 diffusion coefficient increased with the presence of additives especially with PDMS (2000 g/mol, from 1.2 x 10(-9)m(2)/s to 2.8 x 10(-9)m(2)/s). Meanwhile, the saturation solubility of CO2 increase with the incorporation additives. Compared with high M-n additives, the slower CO2 desorption rate with additives with M-n of 2000 g/mol enabled higher amount of CO2 retained in PS, resulting in higher cell density. The incorporation of PDMS (2000 g/mol) decreased the cell size (from 11.67 to 7.57 mu m) and increased volume expansion ratio of PS foams.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 50 条
  • [21] Simultaneously promoting CO2 permeability and selectivity of polyethylene oxide membranes via introducing CO2-philic KAUST-7
    Hou, Wen
    Cheng, Jun
    Tan, Yingyu
    Yang, Chen
    Ren, Xufeng
    Xie, Jinming
    Ye, Bangjiao
    Zhang, Hongjun
    Zhou, Junhu
    Fuel, 2024, 361
  • [22] Ab Initio Screening of CO2-philic Groups
    Tian, Ziqi
    Saito, Tomonori
    Jiang, De-en
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (16): : 3848 - 3852
  • [23] Foaming polystyrene with a mixture of CO2 and ethanol
    Gendron, R
    Champagne, MF
    Delaviz, Y
    Polasky, ME
    JOURNAL OF CELLULAR PLASTICS, 2006, 42 (02) : 127 - 138
  • [24] Ion specific effects with CO2-philic surfactants
    James, Craig
    Eastoe, Julian
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2013, 18 (01) : 40 - 46
  • [25] So why are fluorocarbons CO2-philic anyway?.
    Johnson, JD
    Diep, P
    Jordan, KD
    Beckman, EJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U195 - U196
  • [26] Low Fluorine Content CO2-philic Surfactants
    Mohamed, Azmi
    Sagisaka, Masanobu
    Guittard, Frederic
    Cummings, Stephen
    Paul, Alison
    Rogers, Sarah E.
    Heenan, Richard K.
    Dyer, Robert
    Eastoe, Julian
    LANGMUIR, 2011, 27 (17) : 10562 - 10569
  • [27] Simultaneously promoting CO2 permeability and selectivity of polyethylene oxide membranes via introducing CO2-philic KAUST-7
    Hou, Wen
    Cheng, Jun
    Tan, Yingyu
    Yang, Chen
    Ren, Xufeng
    Xie, Jinming
    Ye, Bangjiao
    Zhang, Hongjun
    Zhou, Junhu
    FUEL, 2024, 361
  • [28] Unlock the Potentials to Further Improve CO2 Storage and Utilization with Supercritical CO2 Emulsions When Applying CO2-Philic Surfactants
    Ren, Guangwei
    Ren, Bo
    Li, Songyan
    Zhang, Chao
    SUSTAINABLE CHEMISTRY, 2021, 2 (01): : 127 - 148
  • [29] Design of hydrocarbon CO2-philic polymers.
    Beckman, EJ
    Enick, RM
    Huang, ZH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U674 - U674
  • [30] Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2
    Hardelin, Linda
    Strom, Anna
    Di Maio, Ernesto
    Iannace, Salvatore
    Larsson, Anette
    CARBOHYDRATE POLYMERS, 2018, 181 : 442 - 449