Scale Effects on the Ballistic Penetration of Graphene Sheets

被引:51
作者
Bizao, Rafael A. [1 ,2 ]
Machado, Leonardo D. [1 ,3 ]
de Sousa, Jose M. [1 ,4 ]
Pugno, Nicola M. [2 ,5 ,6 ]
Galvao, Douglas S. [1 ]
机构
[1] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[2] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired & Graphene Nanomech, Via Mesiano 77, Trento, Italy
[3] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, Piaui, Brazil
[5] Italian Space Agcy, Edoardo Amaldi Fdn, Ket Lab, Via Politecn Snc, I-00133 Rome, Italy
[6] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
巴西圣保罗研究基金会;
关键词
REACTIVE FORCE-FIELD; IMPACT; SIMULATIONS; BEHAVIOR; REAXFF; LAW;
D O I
10.1038/s41598-018-25050-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon nanostructures are promising ballistic protection materials, due to their low density and excellent mechanical properties. Recent experimental and computational investigations on the behavior of graphene under impact conditions revealed exceptional energy absorption properties as well. However, the reported numerical and experimental values differ by an order of magnitude. In this work, we combined numerical and analytical modeling to address this issue. In the numerical part, we employed reactive molecular dynamics to carry out ballistic tests on single, double, and triple-layered graphene sheets. We used velocity values within the range tested in experiments. Our numerical and the experimental results were used to determine parameters for a scaling law. We find that the specific penetration energy decreases as the number of layers (N) increases, from similar to 15 MJ/kg for N = 1 to similar to 0.9 MJ/kg for N = 350, for an impact velocity of 900 m/s. These values are in good agreement with simulations and experiments, within the entire range of N values for which data is presently available. Scale effects explain the apparent discrepancy between simulations and experiments.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]   One, two, and three-dimensional universal laws for fragmentation due to impact and explosion [J].
Carpinteri, A ;
Pugno, N .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2002, 69 (06) :854-856
[3]   Mechanical properties of carbon nanotube networks by molecular mechanics and impact molecular dynamics calculations [J].
Coluci, V. R. ;
Dantas, S. O. ;
Jorio, A. ;
Galvao, D. S. .
PHYSICAL REVIEW B, 2007, 75 (07)
[4]   Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering [J].
Eller, Michael J. ;
Liang, Chao-Kai ;
Della-Negra, Serge ;
Clubb, Aaron B. ;
Kim, Hansoo ;
Young, Amanda E. ;
Schweikert, Emile A. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04)
[5]  
Ge J, 2017, NAT NANOTECHNOL
[6]   Molecular simulations of stress wave propagation and perforation of graphene sheets under transverse impact [J].
Haque, Bazle Z. ;
Chowdhury, Sanjib C. ;
Gillespie, John W., Jr. .
CARBON, 2016, 102 :126-140
[7]   Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy [J].
Laurenzi, S. ;
Pastore, R. ;
Giannini, G. ;
Marchetti, M. .
COMPOSITE STRUCTURES, 2013, 99 :62-68
[8]   Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration [J].
Lee, Jae-Hwang ;
Loya, Phillip E. ;
Lou, Jun ;
Thomas, Edwin L. .
SCIENCE, 2014, 346 (6213) :1092-1096
[9]   Development and Validation of ReaxFF Reactive Force Field for Hydrocarbon Chemistry Catalyzed by Nickel [J].
Mueller, Jonathan E. ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (11) :4939-4949
[10]   Ballistic resistance capacity of carbon nanotubes [J].
Mylvaganam, Kausala ;
Zhang, L. C. .
NANOTECHNOLOGY, 2007, 18 (47)