The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
|
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 38 条
  • [21] On the elliptic curve y2 = x3 −2rDx and factoring integers
    XiuMei Li
    JinXiang Zeng
    Science China Mathematics, 2014, 57 : 719 - 728
  • [22] On the rank of the elliptic curve y2 = x3 + kx.: II
    Kihara, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (04) : 24 - 25
  • [23] On the rational solutions of y2 = x3
    Sharma, Richa
    Bhatter, Sanjay
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 130 - 142
  • [24] On elliptic curves y2=x3-n2x with rank zero
    Feng, KQ
    Xiong, MS
    JOURNAL OF NUMBER THEORY, 2004, 109 (01) : 1 - 26
  • [25] Integral points on the elliptic curve Epq: y2 = x3 + (pq-12) x-2(pq-8)
    Cheng, Teng
    Ji, Qingzhong
    Qin, Hourong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 343 - 352
  • [26] On the Mordell-Weil group of the elliptic curve y2 = x3 + n
    Fujita, Yasutsugu
    Nara, Tadahisa
    JOURNAL OF NUMBER THEORY, 2012, 132 (03) : 448 - 466
  • [27] Elliptic Curve Integral Points on y2 = x3+19x-46
    Zhao, Jianhong
    Yang, Lixing
    PROCEEDINGS OF THE 2ND INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION (IFMEITA 2017), 2017, 130 : 628 - 632
  • [28] The Mordell-Weil bases for the elliptic curve y2 = x3 − m2x + m2
    Sudhansu Sekhar Rout
    Abhishek Juyal
    Czechoslovak Mathematical Journal, 2021, 71 : 1133 - 1147
  • [29] The Mordell-Weil Bases for the Elliptic Curve y2 = x3 - m2x + m2
    Rout, Sudhansu Sekhar
    Juyal, Abhishek
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) : 1133 - 1147
  • [30] The Integral Points on the Elliptic Curve y2=3mx(x2-8)
    Fei, Wan
    Zhao, Jianhong
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259