The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 6 条
[1]   ON THE EQUATION Y2=X(X2+P) [J].
BREMNER, A ;
CASSELS, JWS .
MATHEMATICS OF COMPUTATION, 1984, 42 (165) :257-264
[2]   The diophantine equation x(4)+1=Dy-2 [J].
Cohn, JHE .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1347-1351
[3]   Integer points on the curve Y2 = X3 ± pkX [J].
Draziotis, Konstantinos A. .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1493-1505
[4]  
HARDY G.H., 2008, An introduction to the theory of numbers, V6th
[5]  
Nagell T, 1921, NORSK MAT FORENINGS, V13, P65
[6]   Integer solutions to the equation y2 = x(x2 ± pk) [J].
Walsh, P. G. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (04) :1285-1302