Higher Toda brackets and Massey products

被引:9
作者
Baues, Hans-Joachim [1 ]
Blanc, David [2 ]
Gondhali, Shilpa [2 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
基金
以色列科学基金会;
关键词
Higher order homotopy operation; Higher order cohomology operation; Toda bracket; Massey product; Chain complex; Enriched category; Path object; Monoidal model category; HIGHER HOMOTOPY OPERATIONS; INVARIANT; CATEGORIES; FUNCTORS;
D O I
10.1007/s40062-016-0157-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a uniform definition of higher order Toda brackets in a general setting, covering the known cases of long Toda brackets for topological spaces and Massey products for differential graded algebras, among others.
引用
收藏
页码:643 / 677
页数:35
相关论文
共 64 条
[1]  
Adams J. F., 1958, Comment. Math. Helv, V32, P180, DOI [10.1007/BF02564578, DOI 10.1007/BF02564578]
[2]   ON THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE [J].
ADAMS, JF .
ANNALS OF MATHEMATICS, 1960, 72 (01) :20-109
[3]   COBORDISM MASSEY PRODUCTS [J].
ALEXANDER, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 166 (NAPR) :197-+
[4]  
[Anonymous], 1963, P LOND MATH SOC
[5]  
[Anonymous], 1963, Trans. Amer. Math. Soc
[6]  
[Anonymous], 1971, GRADUATE TEXTS MATH
[7]  
Babenko I. K., 2000, MAT SB, V191, P3, DOI 10.4213/sm497
[8]  
BARRATT MG, 1984, J LOND MATH SOC, V30, P533
[9]  
Baues H. J., 1996, Oxford Mathematical Monographs
[10]   Higher order derived functors and the Adams spectral sequence [J].
Baues, Hans-Joachim ;
Blanc, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (02) :199-239