A DUALITY-BASED OPTIMIZATION APPROACH FOR MODEL ADAPTIVITY IN HETEROGENEOUS MULTISCALE PROBLEMS

被引:5
作者
Maier, Matthias [1 ]
Rannacher, Rolf [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
finite element method; mesh adaptation; model optimization; model adaptation; goal-oriented adaptivity; DWR method; ERROR; HOMOGENIZATION;
D O I
10.1137/16M1105670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a novel framework for model adaptivity in the context of heterogeneous multiscale problems. The framework is based on the idea to interpret model adaptivity as a minimization problem of local error indicators that are derived in the general context of the dual weighted residual (DWR) method. Based on the optimization approach a postprocessing strategy is formulated that lifts the requirement of strict a priori knowledge about applicability and quality of effective models. This allows for the systematic, "goal-oriented" tuning of effective models with respect to a quantity of interest. The framework is tested numerically on elliptic diffusion problems with different types of heterogeneous, random coefficients, as well as an advection-diffusion problem with a strong microscopic, random advection field.
引用
收藏
页码:412 / 428
页数:17
相关论文
共 23 条
  • [1] A posteriori error estimates in quantities of interest for the finite element heterogeneous multiscale method
    Abdulle, Assyr
    Nonnenmacher, Achim
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (05) : 1629 - 1656
  • [2] HOMOGENIZATION AND 2-SCALE CONVERGENCE
    ALLAIRE, G
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) : 1482 - 1518
  • [3] [Anonymous], 1999, OXFORD LECT SERIES M
  • [4] The deal.II Library, Version 8.4
    Bangerth, Wolfgang
    Davydov, Denis
    Heister, Timo
    Heltai, Luca
    Kanschat, Guido
    Kronbichler, Martin
    Maier, Matthias
    Turcksin, Bruno
    Wells, David
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (03) : 135 - 141
  • [5] Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
  • [6] Becker R, 1996, East-West J Numer Math, V4, P237
  • [7] A posteriori control of modeling errors and discretization errors
    Braack, M
    Ern, A
    [J]. MULTISCALE MODELING & SIMULATION, 2003, 1 (02) : 221 - 238
  • [8] Brezzi F., 1999, NUMER ANAL, P69
  • [9] Efendiev Y., 2004, COMMUN MATH SCI, V2, P553, DOI [DOI 10.4310/CMS.2004.V2.N4.A2, DOI 10.4310/CMS]
  • [10] Engquist B., 2003, COMMUN MATH SCI, V1, P87, DOI DOI 10.4310/CMS.2003.V1.N1.A8