OPTIMALITY OF A STANDARD ADAPTIVE FINITE ELEMENT METHOD FOR THE STOKES PROBLEM

被引:6
作者
Feischl, Michael [1 ]
机构
[1] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
基金
澳大利亚研究理事会;
关键词
Stokes; adaptive algorithm; optimality; finite element method; quasi-orthogonality; OPTIMAL CONVERGENCE-RATES; FEM; APPROXIMATION;
D O I
10.1137/17M1153170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the a standard adaptive algorithm for the Taylor-Hood discretization of the stationary Stokes problem converges with optimal rate. This is done by developing an abstract framework for quite general problems, which allows us to prove general quasi-orthogonality proposed in [C. Carstensen et al., Comput. Math. Appl., 67 (2014), pp. 1195-1253]. This property is the main obstacle towards the optimality proof and therefore is the main focus of this work. The key ingredient is a new connection between the mentioned quasi-orthogonality and LU-factorization of infinite matrices.
引用
收藏
页码:1124 / 1157
页数:34
相关论文
共 43 条
[1]   LU-FACTORIZATION OF ORDER BOUNDED OPERATORS ON BANACH SEQUENCE-SPACES [J].
ANDREWS, KT ;
WARD, JD .
JOURNAL OF APPROXIMATION THEORY, 1986, 48 (02) :169-180
[2]  
[Anonymous], 2017, PREPRINT
[3]   Energy norm based error estimators for adaptive BEM for hypersingular integral equations [J].
Aurada, Markus ;
Feischl, Michael ;
Fuehrer, Thomas ;
Karkulik, Michael ;
Praetorius, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2015, 95 :15-35
[4]  
Aurada Markus, 2014, J COMPUT APPL MATH, V255, P481
[5]   An adaptive uzawa FEM for the stokes problem:: Convergence without the inf-sup condition [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1207-1229
[6]   QUASI-OPTIMALITY OF ADAPTIVE NONCONFORMING FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS [J].
Becker, Roland ;
Mao, Shipeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :970-991
[7]   A CONVERGENT NONCONFORMING ADAPTIVE FINITE ELEMENT METHOD WITH QUASI-OPTIMAL COMPLEXITY [J].
Becker, Roland ;
Mao, Shipeng ;
Shi, Zhongci .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4639-4659
[8]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[10]  
BREZZI F., 1991, SPRINGER SER COMPUT, V15