Geometric analysis on H-type groups related to division algebras

被引:17
作者
Calin, Ovidiu [2 ]
Chang, Der-Chen [1 ]
Markina, Irina [3 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Eastern Michigan Univ, Dept Math, Ypsilanti, MI 48197 USA
[3] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Hamiltonian formalism; H-type groups; geodesics; division algebras; the Siegel upper half space;
D O I
10.1002/mana.200710721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present article applies the method of Geometric Analysis to the study H-type groups satisfying the J(2) condition and finishes the series of works describing the Heisenberg group and the quaternion H-type group. The latter class of H-type groups satisfying the J(2) condition is related to the octonions. The relations between the group structure and the boundary of the corresponding Siegel upper half space are given. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:44 / 68
页数:25
相关论文
共 21 条
[1]  
[Anonymous], 2007, AMS/IP Studies in Advanced Mathematics
[2]  
[Anonymous], 1995, CAMBRIDGE STUDIES AD
[3]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[4]  
Beals R, 1997, B SCI MATH, V121, P1
[5]  
Beals R, 1997, B SCI MATH, V121, P97
[6]  
Beals R, 1997, B SCI MATH, V121, P195
[7]   Hamilton-Jacobi theory and the heat kernel on Heisenberg groups [J].
Beals, R ;
Gaveau, B ;
Greiner, PC .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07) :633-689
[8]  
Calin O, 2004, J GEOM ANAL, V14, P1
[9]   Geometric analysis on quaternion H-type groups [J].
Chang, DC ;
Markina, I .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) :265-294
[10]   Quaternion H-type group and differential operator Δλ [J].
Chang Der-Chen ;
Markina, Irina .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04) :523-540