Classification of solutions of a critical Hardy-Sobolev operator

被引:57
作者
Mancini, G.
Fabbri, I.
Sandeep, K.
机构
[1] Univ Roma Tre, Dipartimento Matemat, Rome, Italy
[2] TIFR Ctr, Bangalore 560012, Karnataka, India
关键词
D O I
10.1016/j.jde.2005.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we classify all positive finite energy solutions of the equation -Delta u = u(n/n-2)/vertical bar y vertical bar in R-n where R-n = R-k x Rn-k, n > k >= 2 and a point x is an element of R-n is denoted as x = (y, z) is an element of R-k x Rn-k. As a consequence we obtain the best constant and extremals of a related Hardy-Sobolev inequality. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 276
页数:19
相关论文
共 21 条
[1]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[2]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[3]  
Badiale M, 2004, REV MAT IBEROAM, V20, P33
[4]   On the Grushin operator and hyperbolic symmetry [J].
Beckner, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) :1233-1246
[5]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[9]   Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type [J].
Garofalo, N ;
Vassilev, D .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :411-448
[10]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243