Global Energetics of Solar Flares. VII. Aerodynamic Drag in Coronal Mass Ejections

被引:8
作者
Aschwanden, Markus J. [1 ]
Gopalswamy, Nat [2 ]
机构
[1] Lockheed Martin Solar & Astrophys Lab, Org A021S,Bldg 252,3251 Hanover St, Palo Alto, CA 94304 USA
[2] NASA, Heliophys, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Sun: corona; Sun: coronal mass ejections (CMEs); 1-AU ARRIVAL; MODEL; TIME; ACCELERATION; DYNAMICS; PREDICT;
D O I
10.3847/1538-4357/ab1b39
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The free energy that is dissipated in a magnetic reconnection process of a solar flare, generally accompanied by a coronal mass ejection (CME), has been considered as the ultimate energy source of the global energy budget of solar flares in previous statistical studies. Here we explore the effects of the aerodynamic drag force on CMEs, which supplies additional energy from the slow solar wind to a CME event, besides the magnetic energy supply. For this purpose, we fit the analytical aerodynamic drag model of Cargill and Vrsnak et al. to the height-time profiles r(t) of LASCO/SOHO data in 14,316 CME events observed during the first 8 yr (2010-2017) of the Solar Dynamics Observatory era (ensuring EUV coverage with AIA). Our main findings are (1) a mean solar wind speed of w = 472 +/- 414 km s(-1), (2) a maximum drag-accelerated CME energy of E-drag less than or similar to 2 x 10(32) erg, (3) a maximum flare-accelerated CME energy of E-flare less than or similar to 1.5 x 10(33) erg, (4) the ratio of the summed kinetic energies of all flare-accelerated CMEs to the drag-accelerated CMEs amounts to a factor of 4, (5) the inclusion of the drag force slightly lowers the overall energy budget of CME kinetic energies in flares from approximate to 7% to approximate to 4%, and (6) the arrival times of CMEs at Earth can be predicted with an accuracy of approximate to 23%.
引用
收藏
页数:14
相关论文
共 50 条
[41]   INITIATION OF CORONAL MASS EJECTIONS IN A GLOBAL EVOLUTION MODEL [J].
Yeates, A. R. ;
Mackay, D. H. .
ASTROPHYSICAL JOURNAL, 2009, 699 (02) :1024-1037
[42]   The association of big flares and coronal mass ejections: What is the role of magnetic helicity? [J].
Nindos, A ;
Andrews, MD .
CORONAL AND STELLAR MASS EJECTIONS, 2005, (226) :194-199
[43]   The association of big flares and coronal mass ejections: What is the role of magnetic helicity? [J].
Nindos, A ;
Andrews, MD .
ASTROPHYSICAL JOURNAL, 2004, 616 (02) :L175-L178
[44]   Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness [J].
Scolini, Camilla ;
Messerotti, Mauro ;
Poedts, Stefaan ;
Rodriguez, Luciano .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2018, 8
[45]   Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections [J].
Vourlidas, A ;
Subramanian, P ;
Dere, KP ;
Howard, RA .
ASTROPHYSICAL JOURNAL, 2000, 534 (01) :456-467
[46]   Moving solar radio bursts and their association with coronal mass ejections [J].
Morosan, D. E. ;
Kumari, A. ;
Kilpua, E. K. J. ;
Hamini, A. .
ASTRONOMY & ASTROPHYSICS, 2021, 647
[47]   Simulating Solar Coronal Mass Ejections Constrained by Observations of Their Speed and Poloidal Flux [J].
Singh, T. ;
Yalim, M. S. ;
Pogorelov, N. V. ;
Gopalswamy, N. .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (02)
[48]   HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED MODEL FITTING [J].
Zic, T. ;
Vrsnak, B. ;
Temmer, M. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 218 (02)
[49]   Interaction of coronal mass ejections and the solar wind A force analysis [J].
Talpeanu, D. -C. ;
Poedts, S. ;
D'Huys, E. ;
Mierla, M. ;
Richardson, I. G. .
ASTRONOMY & ASTROPHYSICS, 2022, 663
[50]   On the rates of coronal mass ejections: Remote solar and in situ observations [J].
Riley, Pete ;
Schatzman, C. ;
Cane, H. V. ;
Richardson, I. G. ;
Gopalswamy, N. .
ASTROPHYSICAL JOURNAL, 2006, 647 (01) :648-653