On the Solution of fuzzy Volterra integral equation of second kind

被引:0
作者
Alijani, Zahra [1 ]
Kangro, Urve [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, EE-50409 Tartu, Estonia
来源
2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS) | 2017年
关键词
Volterra integral equations; triangular basis; collocation method; fuzzy integral equation; CALCULUS;
D O I
10.1109/HPCS.2017.78
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this study we use triangular basis function set to solve second kind fuzzy integral equation that can be converted to a system of two integral equations in crisp case. We also consider collocation method for approximately solving the equation.
引用
收藏
页码:483 / 488
页数:6
相关论文
共 8 条
  • [1] Babolian E., 2009, INT J IND MATH, V01, P135
  • [2] Bede B., 2014, MATH FUZZY SETS FUZZ
  • [3] FUZZY MAPPING AND CONTROL
    CHANG, SSL
    ZADEH, LA
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1972, SMC2 (01): : 30 - &
  • [4] TOWARDS FUZZY DIFFERENTIAL-CALCULUS .3. DIFFERENTIATION
    DUBOIS, D
    PRADE, H
    [J]. FUZZY SETS AND SYSTEMS, 1982, 8 (03) : 225 - 233
  • [5] ELEMENTARY FUZZY CALCULUS
    GOETSCHEL, R
    VOXMAN, W
    [J]. FUZZY SETS AND SYSTEMS, 1986, 18 (01) : 31 - 43
  • [6] Hochstadt Harry., 2011, Integral equations, V91
  • [7] FUZZY DIFFERENTIAL-EQUATIONS
    KALEVA, O
    [J]. FUZZY SETS AND SYSTEMS, 1987, 24 (03) : 301 - 317
  • [8] Kress R, 1989, Linear Integral Equations, V17