XLME interpolants, a seamless bridge between XFEM and enriched meshless methods

被引:167
作者
Amiri, F. [1 ]
Anitescu, C. [1 ]
Arroyo, M. [2 ]
Bordas, S. P. A. [3 ]
Rabczuk, T. [1 ,4 ]
机构
[1] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 3, Sch Civil Engn Barcelona ETSECCPB, Barcelona, Spain
[3] Cardiff Univ, Inst Mech & Adv Mat, Cardiff Sch Engn, Cardiff CF24 3AA, S Glam, Wales
[4] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul, South Korea
基金
欧洲研究理事会;
关键词
Local maximum entropy; Convex approximation; Meshless methods; Extrinsic enrichment; FINITE-ELEMENT-METHOD; MESHFREE METHOD; INFORMATION-THEORY; CRACK-GROWTH; IMPLEMENTATION; INTEGRATION;
D O I
10.1007/s00466-013-0891-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop a method based on local maximum entropy shape functions together with enrichment functions used in partition of unity methods to discretize problems in linear elastic fracture mechanics. We obtain improved accuracy relative to the standard extended finite element method at a comparable computational cost. In addition, we keep the advantages of the LME shape functions, such as smoothness and non-negativity. We show numerically that optimal convergence (same as in FEM) for energy norm and stress intensity factors can be obtained through the use of geometric (fixed area) enrichment with no special treatment of the nodes near the crack such as blending or shifting.
引用
收藏
页码:45 / 57
页数:13
相关论文
共 44 条
[1]  
Anderson T., 1995, FRACTURE MECH FUNDAM, P453
[2]   Local maximum-entropy approximation schemes:: a seamless bridge between finite elements and meshfree methods [J].
Arroyo, M ;
Ortiz, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (13) :2167-2202
[3]   Stable Generalized Finite Element Method (SGFEM) [J].
Babuska, I. ;
Banerjee, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :91-111
[4]   Effect of numerical integration on meshless methods [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. ;
Zhang, Qinghui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) :2886-2897
[5]   A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity [J].
Barbieri, E. ;
Petrinic, N. ;
Meo, M. ;
Tagarielli, V. L. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (02) :177-195
[6]   Improved implementation and robustness study of the X-FEM for stress analysis around cracks [J].
Béchet, E ;
Minnebol, H ;
Moës, N ;
Burgardt, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (08) :1033-1056
[7]   Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment [J].
Bordas, Stephane ;
Rabczuk, Timon ;
Zi, Goangseup .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (05) :943-960
[8]   Strain smoothing in FEM and XFEM [J].
Bordas, Stephane P. A. ;
Rabczuk, Timon ;
Nguyen-Xuan, Hung ;
Nguyen, Vinh Phu ;
Natarajan, Sundararajan ;
Bog, Tino ;
Do Minh Quan ;
Nguyen Vinh Hiep .
COMPUTERS & STRUCTURES, 2010, 88 (23-24) :1419-1443
[9]   Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth [J].
Chen, L. ;
Rabczuk, T. ;
Bordas, S. P. A. ;
Liu, G. R. ;
Zeng, K. Y. ;
Kerfriden, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 :250-265
[10]  
Cirak F, 2000, INT J NUMER METH ENG, V47, P2039, DOI 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO