Instantons confined by monopole strings

被引:12
作者
Nitta, Muneto [1 ,2 ]
机构
[1] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238521, Japan
[2] Keio Univ, Res & Educ Ctr Nat Sci, Yokohama, Kanagawa 2238521, Japan
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 06期
关键词
MAGNETIC MONOPOLES; QUARK CONFINEMENT; COSMIC STRINGS; VORTICES; WALLS; SOLITONS; MODULI; PHASE;
D O I
10.1103/PhysRevD.87.066008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is known that monopoles can be confined by vortex strings in d = 3 + 1 while vortices can be confined by domain lines in d = 2 + 1. Here, as a higher dimensional generalization of these, we show that Yang-Mills instantons can be confined by monopole strings in d = 4 + 1. We achieve this by putting the system into the Higgs phase in which the configuration can be constructed inside a non-Abelian vortex sheet. DOI: 10.1103/PhysRevD.87.066008
引用
收藏
页数:6
相关论文
共 50 条
[31]   Interactions of non-Abelian global strings [J].
Nakano, Eiji ;
Nitta, Muneto ;
Matsuura, Taeko .
PHYSICS LETTERS B, 2009, 672 (01) :61-64
[32]   The boring monopole [J].
Agrawal, Prateek ;
Nee, Michael .
SCIPOST PHYSICS, 2022, 13 (03)
[33]   Stringy instantons and magnetized brane models [J].
Condeescu, Cezar .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (7-9) :875-878
[34]   Hypermultiplet metric and D-instantons [J].
Alexandrov, Sergei ;
Banerjee, Sibasish .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[35]   Generalized instantons on complex projective spaces [J].
Kihara, Hironobu ;
Nitta, Muneto .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[36]   Determinants, Even Instantons and Bridgeland Stability [J].
Pretti, Victor do Valle .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (01)
[37]   Topological Nambu monopole in two Higgs doublet models [J].
Eto, Minoru ;
Hamada, Yu ;
Kurachi, Masafumi ;
Nitta, Muneto .
PHYSICS LETTERS B, 2020, 802
[38]   Instantons and vortices on noncommutative toric varieties [J].
Cirio, Lucio S. ;
Landi, Giovanni ;
Szabo, Richard J. .
REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (09)
[39]   QUANTUM PROPERTIES OF PERIODIC INSTANTONS ON A CIRCLE [J].
Shurgaia, A. V. .
MODERN PHYSICS LETTERS A, 2011, 26 (01) :53-63
[40]   Quantizations of local surfaces and rebel instantons [J].
Barmeier, Severin ;
Gasparim, Elizabeth .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (01) :311-351