Longitudinal mixed-effects models for latent cognitive function

被引:7
作者
van den Hout, Ardo [1 ]
Fox, Jean-Paul [2 ]
Muniz-Terrera, Graciela [3 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ Twente, Fac Behav Sci, OMD, NL-7500 AE Enschede, Netherlands
[3] MRC, Unit Lifelong Hlth & Ageing, London, England
关键词
bent-cable; change point; cognition; growth-curve model; item response theory (IRT); longitudinal data analysis; ITEM RESPONSE MODELS; INFERENCE; POINTS; CHOICE;
D O I
10.1177/1471082X14555607
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response theory model given longitudinal test data. Individual-specific parameters are defined for both cognitive function and the rate of change over time, using the change-point predictor for non-linear trends. Bayesian inference is used, where the Deviance Information Criterion and the L-criterion are investigated for model comparison. Special attention is given to the identifiability of the item response parameters. Item response theory makes it possible to use dichotomous and polytomous test items, and to take into account missing data and survey-design change during follow-up. This will be illustrated in an application where data stem from the Cambridge City over-75s Cohort Study.
引用
收藏
页码:366 / 387
页数:22
相关论文
共 38 条
[31]  
Samejima F., 1997, GRADED RESPONSE MODE, DOI DOI 10.1007/978-1-4757-2691-6_5
[32]   Bayesian measures of model complexity and fit [J].
Spiegelhalter, DJ ;
Best, NG ;
Carlin, BR ;
van der Linde, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :583-616
[33]   DETECTING BREAK POINTS IN GENERALIZED LINEAR-MODELS [J].
STASINOPOULOS, DM ;
RIGBY, RA .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 13 (04) :461-471
[34]   A NEW MAXIMUM-LIKELIHOOD ALGORITHM FOR PIECEWISE REGRESSION [J].
TISHLER, A ;
ZANG, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :980-987
[35]   Change point models for cognitive tests using semi-parametric maximum likelihood [J].
van den Hout, Ardo ;
Muniz-Terrera, Graciela ;
Matthews, Fiona E. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) :684-698
[36]   Smooth random change point models [J].
van den Hout, Ardo ;
Muniz-Terrera, Graciela ;
Matthews, Fiona E. .
STATISTICS IN MEDICINE, 2011, 30 (06) :599-610
[37]  
Verbeke G., 2000, Linear mixed models for longitudi- nal data
[38]   BAYESIAN ANALYSIS OF DYNAMIC ITEM RESPONSE MODELS IN EDUCATIONAL TESTING [J].
Wang, Xiaojing ;
Berger, James O. ;
Burdick, Donald S. .
ANNALS OF APPLIED STATISTICS, 2013, 7 (01) :126-153