Longitudinal mixed-effects models for latent cognitive function

被引:7
作者
van den Hout, Ardo [1 ]
Fox, Jean-Paul [2 ]
Muniz-Terrera, Graciela [3 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] Univ Twente, Fac Behav Sci, OMD, NL-7500 AE Enschede, Netherlands
[3] MRC, Unit Lifelong Hlth & Ageing, London, England
关键词
bent-cable; change point; cognition; growth-curve model; item response theory (IRT); longitudinal data analysis; ITEM RESPONSE MODELS; INFERENCE; POINTS; CHOICE;
D O I
10.1177/1471082X14555607
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response theory model given longitudinal test data. Individual-specific parameters are defined for both cognitive function and the rate of change over time, using the change-point predictor for non-linear trends. Bayesian inference is used, where the Deviance Information Criterion and the L-criterion are investigated for model comparison. Special attention is given to the identifiability of the item response parameters. Item response theory makes it possible to use dichotomous and polytomous test items, and to take into account missing data and survey-design change during follow-up. This will be illustrated in an application where data stem from the Cambridge City over-75s Cohort Study.
引用
收藏
页码:366 / 387
页数:22
相关论文
共 38 条
[1]  
[Anonymous], 2012, BUGS BOOK PRACTICAL
[2]  
[Anonymous], 1997, Handbook of Item Response Theory, DOI [DOI 10.1007/978-1-4757-2691-6_5, DOI 10.1007/978-1-4757-2691-65]
[3]   LATENT MARKOV MODEL FOR LONGITUDINAL BINARY DATA: AN APPLICATION TO THE PERFORMANCE EVALUATION OF NURSING HOMES [J].
Bartolucci, Francesco ;
Lupparelli, Monia ;
Montanari, Giorgio E. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (02) :611-636
[4]  
Carlin BP, 2009, CH CRC TEXT STAT SCI, V78, P1
[5]   Bent-cable regression theory and applications [J].
Chiu, G ;
Lockhart, R ;
Routledge, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) :542-553
[6]  
Cohen P., 2008, Applied data analytic techniques for turning points research
[7]  
Douglas JA, 1999, STAT MED, V18, P2917
[8]   A mixture model for the joint analysis of latent developmental trajectories and survival [J].
Entink, Rinke H. Klein ;
Fox, Jean-Paul ;
van den Hout, Ardo .
STATISTICS IN MEDICINE, 2011, 30 (18) :2310-2325
[9]   MINI-MENTAL STATE - PRACTICAL METHOD FOR GRADING COGNITIVE STATE OF PATIENTS FOR CLINICIAN [J].
FOLSTEIN, MF ;
FOLSTEIN, SE ;
MCHUGH, PR .
JOURNAL OF PSYCHIATRIC RESEARCH, 1975, 12 (03) :189-198
[10]  
Fox JP, 2010, STAT SOC BEHAV SC, P1, DOI 10.1007/978-1-4419-0742-4