Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism

被引:525
作者
Xiong, Zhaoping [1 ,2 ,3 ,4 ]
Wang, Dingyan [3 ,4 ]
Liu, Xiaohong [1 ,2 ,3 ]
Zhong, Feisheng [3 ,4 ]
Wan, Xiaozhe [3 ,4 ]
Li, Xutong [3 ,4 ]
Li, Zhaojun [3 ]
Luo, Xiaomin [3 ]
Chen, Kaixian [1 ,2 ,3 ]
Jiang, Hualiang [1 ,2 ,3 ]
Zheng, Mingyue [3 ]
机构
[1] ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China
[2] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China
[3] Chinese Acad Sci, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai Inst Mat Med, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
[4] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DATABASE; QSAR; HERG;
D O I
10.1021/acs.jmedchem.9b00959
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for the rising amounts of data, but the gap between what these neural networks learn and what human beings can comprehend is growing. Moreover, this gap may induce distrust and restrict deep learning applications in practice. Here, we introduce a new graph neural network architecture called Attentive FP for molecular representation that uses a graph attention mechanism to learn from relevant drug discovery data sets. We demonstrate that Attentive FP achieves state-of-the-art predictive performances on a variety of data sets and that what it learns is interpretable. The feature visualization for Attentive FP suggests that it automatically learns nonlocal intramolecular interactions from specified tasks, which can help us gain chemical insights directly from data beyond human perception.
引用
收藏
页码:8749 / 8760
页数:12
相关论文
共 47 条
[1]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[2]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[3]  
[Anonymous], 2012, P 25 INT C NEURIPS
[4]  
[Anonymous], 2017, ARXIV170401212
[5]  
Bolton EE, 2010, ANN REP COMP CHEM, V4, P217, DOI 10.1016/S1574-1400(08)00012-1
[6]   Tuning hERG Out: Antitarget QSAR Models for Drug Development [J].
Braga, Rodolpho C. ;
Alves, Vinicius M. ;
Silva, Meryck F. B. ;
Muratov, Eugene ;
Fourches, Denis ;
Tropsha, Alexander ;
Andrade, Carolina H. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2014, 14 (11) :1399-1415
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]   Reconstructing quantum states with generative models [J].
Carrasquilla, Juan ;
Torlai, Giacomo ;
Melko, Roger G. ;
Aolita, Leandro .
NATURE MACHINE INTELLIGENCE, 2019, 1 (03) :155-161
[9]  
Chung J., 2014, ARXIV
[10]   Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction [J].
Coley, Connor W. ;
Barzilay, Regina ;
Green, William H. ;
Jaakkola, Tommi S. ;
Jensen, Klavs F. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (08) :1757-1772