Impact of Correlation-based Feature Selection on Photovoltaic Power Prediction

被引:0
作者
Kwon, Jung-Hyok [1 ]
Lee, Sang-Woo [2 ]
Lee, Sol-Bee [2 ]
Kim, Eui-Jik [2 ]
机构
[1] Hallym Univ, Smart Comp Lab, Chunchon, South Korea
[2] Hallym Univ, Sch Software, Chunchon, South Korea
来源
2019 4TH TECHNOLOGY INNOVATION MANAGEMENT AND ENGINEERING SCIENCE INTERNATIONAL CONFERENCE (TIMES-ICON) | 2019年
基金
新加坡国家研究基金会;
关键词
Correlation coefficient; feature selection; machine learning; photovoltaics power prediction; weather variables; ENSEMBLE;
D O I
10.1109/times-icon47539.2019.9024493
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper empirically presents the impact of the correlation-based feature selection on the accuracy of the photovoltaic (PV) power prediction, and then selects the weather variables that maximize prediction accuracy. To this end, the experiments are conducted using the weather dataset consisting of eighteen weather variables (i.e., features). For experiments, we first calculate a correlation coefficient of each weather variable by analyzing the correlation between PV power and each weather variable. Then, we create the subsets of weather variables considering the absolute value of correlation coefficient and generate the multiple prediction models using the created subsets. Finally, the accuracy of the generated prediction models is compared with each other to find the most accurate prediction model. The experiment results provide a reference guideline for selecting the weather variables that maximize the accuracy of PV power prediction.
引用
收藏
页数:4
相关论文
共 11 条
[1]   An analog ensemble for short-term probabilistic solar power forecast [J].
Alessandrini, S. ;
Delle Monache, L. ;
Sperati, S. ;
Cervone, G. .
APPLIED ENERGY, 2015, 157 :95-110
[2]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[3]   Probabilistic solar power forecasting in smart grids using distributed information [J].
Bessa, R. J. ;
Trindade, A. ;
Silva, Catia S. P. ;
Miranda, V. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 72 :16-23
[4]   Multi-Model Ensemble for day ahead prediction of photovoltaic power generation [J].
Pierro, Marco ;
Bucci, Francesco ;
De Felice, Matteo ;
Maggioni, Enrico ;
Moser, David ;
Perotto, Alessandro ;
Spada, Francesco ;
Cornaro, Cristina .
SOLAR ENERGY, 2016, 134 :132-146
[5]   Solar photovoltaic generation forecasting methods: A review [J].
Sobri, Sobrina ;
Koohi-Kamali, Sam ;
Abd Rahim, Nasrudin .
ENERGY CONVERSION AND MANAGEMENT, 2018, 156 :459-497
[6]   Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power [J].
Tascikaraoglu, Akin ;
Sanandaji, Borhan M. ;
Chicco, Gianfranco ;
Cocina, Valeria ;
Spertino, Filippo ;
Erdinc, Ozan ;
Paterakis, Nikolaos G. ;
Catalao, Joao P. S. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (03) :1295-1305
[7]  
Tyagi Sanjay Kumar, 2014, APPL MATH MODEL, V38, P659
[8]   Photovoltaic and Solar Power Forecasting for Smart Grid Energy Management [J].
Wan, Can ;
Zhao, Jian ;
Song, Yonghua ;
Xu, Zhao ;
Lin, Jin ;
Hu, Zechun .
CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 1 (04) :38-46
[9]   Structural Regularized Support Vector Machine: A Framework for Structural Large Margin Classifier [J].
Xue, Hui ;
Chen, Songcan ;
Yang, Qiang .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (04) :573-587
[10]   A new sampling method in particle filter based on Pearson correlation coefficient [J].
Zhou, Haomiao ;
Deng, Zhihong ;
Xia, Yuanqing ;
Fu, Mengyin .
NEUROCOMPUTING, 2016, 216 :208-215