CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES

被引:0
作者
Henriques, Andre [1 ]
Penneys, David [2 ]
Tener, James [3 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
DOCUMENTA MATHEMATICA | 2016年 / 21卷
基金
美国国家科学基金会;
关键词
MONOIDAL CATEGORIES; FROBENIUS ALGEBRAS; SUBFACTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a braided pivotal category C and a pivotal module tensor category M, we define a functor Tr-C : M -> C, called the associated categorified trace. By a result of Bezrukavnikov, Finkelberg and Ostrik, the functor Tr-C comes equipped with natural isomorphisms tau(x,y) : Tr-C (x circle times y) -> Tr-C (y circle times x), which we call the traciators. This situation lends itself to a diagramatic calculus of 'strings on cylinders', where the traciator corresponds to wrapping a string around the back of a cylinder. We show that Tr-C in fact has a much richer graphical calculus in which the tubes are allowed to branch and braid. Given algebra objects A and B, we prove that Tr-C(A) and Tr-C(A circle times B) are again algebra objects. Moreover, provided certain mild assumptions are satisfied, Tr-C (A) and Tr-C (A circle times B) are semisimple whenever A and B are semisimple.
引用
收藏
页码:1089 / 1150
页数:62
相关论文
共 44 条
[1]   HIGHER-DIMENSIONAL ALGEBRA AND TOPOLOGICAL QUANTUM-FIELD THEORY [J].
BAEZ, JC ;
DOLAN, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6073-6105
[2]  
BAKALOV BK B., 2001, University Lecture Series, V21
[3]  
Bartels A., 2014, ARXIV14098672
[4]  
Bezrukavnikov R., 2004, Adv. Stud. Pure Math., V40, P69, DOI [10.2969/aspm/04010069, DOI 10.2969/ASPM/04010069]
[5]   On tensor categories attached to cells in affine Weyl groups, III [J].
Bezrukavnikov, Roman ;
Finkelberg, Michael ;
Ostrik, Victor .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :207-234
[6]   Skein theory for the ADE planar algebras [J].
Bigelow, Stephen .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (05) :658-666
[7]   Exact Sequences of Tensor Categories [J].
Bruguieres, Alain ;
Natale, Sonia .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (24) :5644-5705
[8]   The Witt group of non-degenerate braided fusion categories [J].
Davydov, Alexei ;
Muger, Michael ;
Nikshych, Dmitri ;
Ostrik, Victor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 :135-177
[9]  
Douglas C. L., 2014, ARXIV14064204
[10]   On braided fusion categories I [J].
Drinfeld, Vladimir ;
Gelaki, Shlomo ;
Nikshych, Dmitri ;
Ostrik, Victor .
SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01) :1-119