Tectonic Uplift Destabilizes Subsea Gas Hydrate: A Model Example From Hikurangi Margin, New Zealand

被引:35
作者
Burton, Zachary F. M. [1 ,2 ]
Kroeger, Karsten F. [3 ]
Scheirer, Allegra Hosford [1 ]
Seol, Yongkoo [2 ]
Burgreen-Chan, Blair [4 ]
Graham, Stephan A. [1 ]
机构
[1] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[2] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA
[3] GNS Sci, Lower Hutt, New Zealand
[4] Conoco Phillips, Houston, TX USA
关键词
BOTTOM-SIMULATING REFLECTORS; CONDUCTIVE HEAT-FLOW; METHANE HYDRATE; EAST-COAST; MASSIVE DISSOCIATION; PLATE CONVERGENCE; FLUID-FLOW; SEA-BED; CARBON; EVOLUTION;
D O I
10.1029/2020GL087150
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Rising ocean temperatures and falling sea level are commonly cited as mechanisms of marine gas hydrate destabilization. More recently, uplift-both isostatic and tectonic-has been invoked. However, the effect of tectonic shortening and uplift on gas hydrate stability zone extent has not been validated via integrated computational modeling. Here, modeling along the Hikurangi margin of New Zealand illustrates the mechanism of tectonic uplift as a driver of gas hydrate destabilization. We simulate how tectonic uplift and shortening affect the presence and decrease the extent of a gas hydrate stability zone. We suggest that resultant gas hydrate destabilization in the marine realm may impact the global carbon cycle and oceanic chemistry over geologic time.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor [J].
Andreassen, K. ;
Hubbard, A. ;
Winsborrow, M. ;
Patton, H. ;
Vadakkepuliyambatta, S. ;
Plaza-Faverola, A. ;
Gudlaugsson, E. ;
Serov, P. ;
Deryabin, A. ;
Mattingsdal, R. ;
Mienert, J. ;
Bunz, S. .
SCIENCE, 2017, 356 (6341) :948-952
[2]  
[Anonymous], 1989, INTEGRATED STUDY OIL
[3]   Turbidite systems in the inner forearc domain of the Hikurangi convergent margin (New Zealand):: New constraints on the development of trench-slope basins [J].
Bailleul, Julien ;
Robin, Cecile ;
Chanier, Frank ;
Guillocheau, Francois ;
Field, Brad ;
Ferriere, Jacky .
JOURNAL OF SEDIMENTARY RESEARCH, 2007, 77 (3-4) :263-283
[4]   EVOLUTION OF UPPER CENOZOIC MAGMATIC ARC AND PLATE BOUNDARY IN NORTHERN NEW-ZEALAND [J].
BALLANCE, PF .
EARTH AND PLANETARY SCIENCE LETTERS, 1976, 28 (03) :356-370
[5]   Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand [J].
Barnes, Philip M. ;
Lamarche, Geoffroy ;
Bialas, Joerg ;
Henrys, Stuart ;
Pecher, Ingo ;
Netzeband, Gesa L. ;
Greinert, Jens ;
Mountjoy, Joshu J. ;
Pedley, Katherine ;
Crutchley, Gareth .
MARINE GEOLOGY, 2010, 272 (1-4) :26-48
[6]   Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand [J].
Barnes, PM ;
Nicol, A .
TECTONICS, 2004, 23 (01) :TC10151-25
[7]  
Barnes PM, 2002, GEOL SOC AM BULL, V114, P1379, DOI 10.1130/0016-7606(2002)114<1379:LCEAEP>2.0.CO
[8]  
2
[9]  
Beardsmore G.R, 2001, Crustal Heat flow: a Guide to Measurement and Modelling, V1st
[10]   Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification [J].
Biastoch, A. ;
Treude, T. ;
Ruepke, L. H. ;
Riebesell, U. ;
Roth, C. ;
Burwicz, E. B. ;
Park, W. ;
Latif, M. ;
Boening, C. W. ;
Madec, G. ;
Wallmann, K. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38