Chaos in Discrete Structured Population Models

被引:21
作者
Liz, Eduardo [1 ]
Ruiz-Herrera, Alfonso [2 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 2, EI Telecomunicac, Vigo 36310, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
chaotic dynamics; coin-tossing; structured population models; Clark equation; LPA model; DYNAMICS; RECRUITMENT; POINTS; ATTRACTORS;
D O I
10.1137/120868980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove analytically the existence of chaotic dynamics in some classical discrete-time age-structured population models. Our approach allows us to estimate the sensitive dependence on the initial conditions, regions of initial data with chaotic behavior, and explicit ranges of parameters for which the considered models display chaos. These properties have important implications for evaluating the influence of a chaotic regime on the predictions based on mathematical models. We illustrate through particular examples how to apply our results.
引用
收藏
页码:1200 / 1214
页数:15
相关论文
共 38 条
[1]  
Aulbach B., 2001, Nonlinear Dyn. Syst. Theory, V1, P23
[2]  
BLOCK LS, 1992, LECT NOTES MATH, V1513, pUR3
[3]   FURTHER ANALYSIS OF CLARKS DELAYED RECRUITMENT MODEL [J].
BOTSFORD, LW .
BULLETIN OF MATHEMATICAL BIOLOGY, 1992, 54 (2-3) :275-293
[4]  
Caswell Hal, 2001, pi
[5]  
Clark C., 1976, Mathematical Bioeconomics: The Optimal Management of Renewable Resources
[6]   DELAYED-RECRUITMENT MODEL OF POPULATION-DYNAMICS, WITH AN APPLICATION TO BALEEN WHALE POPULATIONS [J].
CLARK, CW .
JOURNAL OF MATHEMATICAL BIOLOGY, 1976, 3 (3-4) :381-391
[7]   EXPERIMENTALLY-INDUCED TRANSITIONS IN THE DYNAMIC BEHAVIOR OF INSECT POPULATIONS [J].
COSTANTINO, RF ;
CUSHING, JM ;
DENNIS, B ;
DESHARNAIS, RA .
NATURE, 1995, 375 (6528) :227-230
[8]   Chaotic dynamics in an insect population [J].
Costantino, RF ;
Desharnais, RA ;
Cushing, JM ;
Dennis, B .
SCIENCE, 1997, 275 (5298) :389-391
[9]  
Cushing J., 2004, FIELDS I COMMUNICATI, V42, P29
[10]  
CUSHING J. M., 1998, CBMS-NSF MA, V71