Double Penalized Quantile Regression for the Linear Mixed Effects Model

被引:6
|
作者
Li, Hanfang [1 ,2 ]
Liu, Yuan [3 ]
Luo, Youxi [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
[3] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
关键词
Double penalized; fixed effects; quantile regression; random effects; variable selection; COVARIANCE STRUCTURE; VARIABLE SELECTION; INFORMATION;
D O I
10.1007/s11424-020-9065-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
引用
收藏
页码:2080 / 2102
页数:23
相关论文
共 50 条
  • [21] Efficient Penalized Estimation for Linear Regression Model
    Mao, Guangyu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (07) : 1436 - 1449
  • [22] Penalized empirical likelihood based variable selection for partially linear quantile regression models with missing responses
    Tang, Xinrong
    Zhao, Peixin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 721 - 739
  • [23] Penalized quantile regression tree
    Kim, Jaeoh
    Cho, HyungJun
    Bang, Sungwan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (07) : 1361 - 1371
  • [24] A coordinate descent algorithm for computing penalized smooth quantile regression
    Mkhadri, Abdallah
    Ouhourane, Mohamed
    Oualkacha, Karim
    STATISTICS AND COMPUTING, 2017, 27 (04) : 865 - 883
  • [25] Wild bootstrap inference for penalized quantile regression for longitudinal data
    Lamarche, Carlos
    Parker, Thomas
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1799 - 1826
  • [26] A coordinate descent algorithm for computing penalized smooth quantile regression
    Abdallah Mkhadri
    Mohamed Ouhourane
    Karim Oualkacha
    Statistics and Computing, 2017, 27 : 865 - 883
  • [27] ADMM for High-Dimensional Sparse Penalized Quantile Regression
    Gu, Yuwen
    Fan, Jun
    Kong, Lingchen
    Ma, Shiqian
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (03) : 319 - 331
  • [28] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [29] ADMM for Penalized Quantile Regression in Big Data
    Yu, Liqun
    Lin, Nan
    INTERNATIONAL STATISTICAL REVIEW, 2017, 85 (03) : 494 - 518
  • [30] Model selection via Bayesian information criterion for divide-and-conquer penalized quantile regression
    Kang, Jongkyeong
    Han, Seokwon
    Bang, Sungwan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 217 - 227