Double Penalized Quantile Regression for the Linear Mixed Effects Model

被引:6
|
作者
Li, Hanfang [1 ,2 ]
Liu, Yuan [3 ]
Luo, Youxi [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Cent China Normal Univ, Wuhan 430079, Peoples R China
[3] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
关键词
Double penalized; fixed effects; quantile regression; random effects; variable selection; COVARIANCE STRUCTURE; VARIABLE SELECTION; INFORMATION;
D O I
10.1007/s11424-020-9065-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
引用
收藏
页码:2080 / 2102
页数:23
相关论文
共 50 条
  • [1] Double Penalized Quantile Regression for the Linear Mixed Effects Model
    Hanfang Li
    Yuan Liu
    Youxi Luo
    Journal of Systems Science and Complexity, 2020, 33 : 2080 - 2102
  • [2] Double Penalized Expectile Regression for Linear Mixed Effects Model
    Gao, Sihan
    Chen, Jiaqing
    Yuan, Zihao
    Liu, Jie
    Huang, Yangxin
    SYMMETRY-BASEL, 2022, 14 (08):
  • [3] Hierarchically penalized quantile regression
    Kang, Jongkyeong
    Bang, Sungwan
    Jhun, Myoungshic
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 340 - 356
  • [4] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03) : 495 - 529
  • [5] Group penalized quantile regression
    Mohamed Ouhourane
    Yi Yang
    Andréa L. Benedet
    Karim Oualkacha
    Statistical Methods & Applications, 2022, 31 : 495 - 529
  • [6] Bayesian quantile semiparametric mixed-effects double regression models
    Zhang, Duo
    Wu, Liucang
    Ye, Keying
    Wang, Min
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) : 303 - 315
  • [7] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [8] Penalized expectile regression: an alternative to penalized quantile regression
    Lina Liao
    Cheolwoo Park
    Hosik Choi
    Annals of the Institute of Statistical Mathematics, 2019, 71 : 409 - 438
  • [9] Extended ADMM for general penalized quantile regression with linear constraints in big data
    Liu, Yongxin
    Zeng, Peng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4268 - 4289
  • [10] Hierarchically penalized quantile regression with multiple responses
    Jongkyeong Kang
    Seung Jun Shin
    Jaeshin Park
    Sungwan Bang
    Journal of the Korean Statistical Society, 2018, 47 : 471 - 481