Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation

被引:47
|
作者
Seifert, K. [1 ]
Zagrodnik, R. [1 ]
Stodolny, M. [1 ]
Laniecki, M. [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Chem, Umultowska 89B, PL-61614 Poznan, Poland
关键词
Chewing gum production waste; Dark fermentation; Photofermentation; Biohydrogen; Hybrid system; BIO-HYDROGEN PRODUCTION; HYDRAULIC RETENTION TIME; RHODOBACTER-SPHAEROIDES; PHOTO-FERMENTATION; WASTE-WATER; RHODOPSEUDOMONAS-PALUSTRIS; ENTEROBACTER-AEROGENES; SEQUENTIAL DARK; GROUND WHEAT; FOOD WASTE;
D O I
10.1016/j.renene.2018.01.105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two-step hybrid system of microbiological hydrogen production with the diluted solid wastes from chewing gum production as a substrate was studied. As the first step, dark fermentation with the digested sludge at different concentrations of waste was performed. The effluent originating from the dark process was subsequently applied in photofermentation with Rhodobacter sphaeroides bacteria. In the first step, the degradation of sweetening substances as well as Talha gum remaining in waste was observed. Hydrogen, carbon dioxide and liquid metabolites (Volatile Fatty Acids - VFAs) were the main products. The maximum hydrogen production in dark fermentation (0.36 L/L-medium) was observed at concentration of 67 g waste/L. Effluents from the first step, containing mainly xylitol, butyric, acetic, lactic and propionic acids, served as the source of organic carbon for photofermentation. The maximum amount of hydrogen at this step reached 0.80 L H-2/L of diluted (1:8) effluent. The presence of significant concentration of ammonium ions (similar to 480 mg/L) in non-diluted effluent completely ceased the hydrogen formation by nitrogenase, therefore reduction in the amount of NH4+ ions in the medium was necessary. This was realized by the dilution of effluent from dark fermentation. The total amount of hydrogen produced in sequential dark and photo-fermentation process under the optimized reaction conditions reached the volume of similar to 6.7 L H-2/L of non-diluted waste. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:526 / 532
页数:7
相关论文
共 50 条
  • [1] Enhanced biohydrogen production from cornstalk through a two-step fermentation: Dark fermentation and photofermentation
    Zhang, Yang
    Li, Qing
    Wang, Xueqing
    Yang, Honghui
    Guo, Liejin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2017, 41 (15) : 2491 - 2501
  • [2] A two-step process for hydrogen production from vacuum residue
    Sahu, M. K.
    Sinha, A. S. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) : 1551 - 1559
  • [3] Biohydrogen production from beet molasses by sequential dark and photofermentation
    Ozgur, Ebru
    Mars, Astrid E.
    Peksel, Beguem
    Louwerse, Annemarie
    Yucel, Meral
    Gunduz, Ufuk
    Claassen, Pieternel A. M.
    Eroglu, Inci
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (02) : 511 - 517
  • [4] Biohydrogen Production from Cheese Whey Wastewater in a Two-Step Anaerobic Process
    Pankaj K. Rai
    S. P. Singh
    R. K. Asthana
    Applied Biochemistry and Biotechnology, 2012, 167 : 1540 - 1549
  • [5] Biohydrogen Production from Cheese Whey Wastewater in a Two-Step Anaerobic Process
    Rai, Pankaj K.
    Singh, S. P.
    Asthana, R. K.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 167 (06) : 1540 - 1549
  • [6] Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation
    Zong, Wenming
    Yu, Ruisong
    Zhang, Peng
    Fan, Meizhen
    Zhou, Zhihua
    BIOMASS & BIOENERGY, 2009, 33 (10): : 1458 - 1463
  • [7] Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation
    Ozgur, Ebru
    Peksel, Begum
    JOURNAL OF CLEANER PRODUCTION, 2013, 52 : 14 - 20
  • [8] Enhanced bio-hydrogen production from corncob by a two-step process: Dark- and photo-fermentation
    Yang, Honghui
    Guo, Liejin
    Liu, Fei
    BIORESOURCE TECHNOLOGY, 2010, 101 (06) : 2049 - 2052
  • [9] Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process
    Abreu, A. A.
    Tavares, F.
    Alves, M. M.
    Cavaleiro, A. J.
    Pereira, M. A.
    BIORESOURCE TECHNOLOGY, 2019, 278 : 180 - 186
  • [10] Biohydrogen production from crude glycerol by two stage of dark and photo fermentation
    Chookaew, Teera
    O-Thong, Sompong
    Prasertsan, Poonsuk
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (24) : 7433 - 7438