Split-gate cavity coupler for silicon circuit quantum electrodynamics

被引:17
作者
Borjans, F. [1 ]
Croot, X. [1 ]
Putz, S. [1 ,3 ]
Mi, X. [1 ,4 ]
Quinn, S. M. [2 ]
Pan, A. [2 ]
Kerckhoff, J. [2 ]
Pritchett, E. J. [2 ,5 ]
Jackson, C. A. [2 ]
Edge, L. F. [2 ]
Ross, R. S. [2 ]
Ladd, T. D. [2 ]
Borselli, M. G. [2 ]
Gyure, M. F. [2 ,6 ]
Petta, J. R. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] HRL Labs LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265 USA
[3] Univ Wien, Vienna Ctr Quantum Sci & Technol, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] Google Inc, Santa Barbara, CA 93117 USA
[5] IBM Thomas J Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[6] Univ Calif Los Angeles, Ctr Quantum Sci & Engn, Box 951594, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
ELECTRON; NOISE; QUBIT; SPINS; DOTS;
D O I
10.1063/5.0006442
中图分类号
O59 [应用物理学];
学科分类号
摘要
Coherent charge-photon and spin-photon coupling has recently been achieved in silicon double quantum dots (DQDs). Here, we demonstrate a versatile split-gate cavity-coupler that allows more than one DQD to be coupled to the same microwave cavity. Measurements of the cavity transmission as a function of level detuning yield a charge cavity coupling rate of g(c)/2 pi = 58 MHz, a charge decoherence rate of gamma(c)/2 pi = 36 MHz, and a cavity decay rate of kappa/2 pi = 1.2 MHz. The charge cavity coupling rate is in good agreement with device simulations. Our coupling technique can be extended to enable simultaneous coupling of multiple DQDs to the same cavity mode, opening the door to long-range coupling of semiconductor qubits using microwave frequency photons.
引用
收藏
页数:4
相关论文
共 31 条
[1]   Gate-defined quantum dots in intrinsic silicon [J].
Angus, Susan J. ;
Ferguson, Andrew J. ;
Dzurak, Andrew S. ;
Clark, Robert G. .
NANO LETTERS, 2007, 7 (07) :2051-2055
[2]  
[Anonymous], 2017, CANCER DISCOV, V7, pOF12, DOI DOI 10.1103/PHYSREVX.7.011030
[3]   Resonant microwave-mediated interactions between distant electron spins [J].
Borjans, F. ;
Croot, X. G. ;
Mi, X. ;
Gullans, M. J. ;
Petta, J. R. .
NATURE, 2020, 577 (7789) :195-+
[4]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[5]   Metamorphic materials for quantum computing [J].
Deelman, Peter W. ;
Edge, Lisa F. ;
Jackson, Clayton A. .
MRS BULLETIN, 2016, 41 (03) :224-229
[6]   Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip [J].
Delbecq, M. R. ;
Schmitt, V. ;
Parmentier, F. D. ;
Roch, N. ;
Viennot, J. J. ;
Feve, G. ;
Huard, B. ;
Mora, C. ;
Cottet, A. ;
Kontos, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[7]   Coupling Two Distant Double Quantum Dots with a Microwave Resonator [J].
Deng, Guang-Wei ;
Wei, Da ;
Li, Shu-Xiao ;
Johansson, J. R. ;
Kong, Wei-Cheng ;
Li, Hai-Ou ;
Cao, Gang ;
Xiao, Ming ;
Guo, Guang-Can ;
Nori, Franco ;
Jiang, Hong-Wen ;
Guo, Guo-Ping .
NANO LETTERS, 2015, 15 (10) :6620-6625
[8]   Dipole Coupling of a Double Quantum Dot to a Microwave Resonator [J].
Frey, T. ;
Leek, P. J. ;
Beck, M. ;
Blais, A. ;
Ihn, T. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[9]   Fidelity benchmarks for two-qubit gates in silicon [J].
Huang, W. ;
Yang, C. H. ;
Chan, K. W. ;
Tanttu, T. ;
Hensen, B. ;
Leon, R. C. C. ;
Fogarty, M. A. ;
Hwang, J. C. C. ;
Hudson, F. E. ;
Itoh, K. M. ;
Morello, A. ;
Laucht, A. ;
Dzurak, A. S. .
NATURE, 2019, 569 (7757) :532-+
[10]   Coherent spin-photon coupling using a resonant exchange qubit [J].
Landig, A. J. ;
Koski, J. V. ;
Scarlino, P. ;
Mendes, U. C. ;
Blais, A. ;
Reichl, C. ;
Wegscheider, W. ;
Wallraff, A. ;
Ensslin, K. ;
Ihn, T. .
NATURE, 2018, 560 (7717) :179-184