FoldEco: A Model for Proteostasis in E. coli

被引:57
作者
Powers, Evan T. [1 ]
Powers, David L. [2 ]
Gierasch, Lila M. [3 ,4 ]
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA
[3] Univ Massachusetts, Dept Chem & Biochem, Amherst, MA 01003 USA
[4] Univ Massachusetts, Dept Mol Biol, Amherst, MA 01003 USA
来源
CELL REPORTS | 2012年 / 1卷 / 03期
基金
美国国家卫生研究院;
关键词
END RULE PATHWAY; ESCHERICHIA-COLI; PROTEIN; DNAK; AGGREGATION; BINDING; GROEL; CHAPERONES; ATP; MECHANISM;
D O I
10.1016/j.celrep.2012.02.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To gain insight into the interplay of processes and species that maintain a correctly folded, functional proteome, we have developed a computational model called FoldEco. FoldEco models the cellular proteostasis network of the E. coli cytoplasm, including protein synthesis, degradation, aggregation, chaperone systems, and the folding characteristics of protein clients. We focused on E. coli because much of the needed input information-including mechanisms, rate parameters, and equilibrium coefficients-is available, largely from in vitro experiments; however, FoldEco will shed light on proteostasis in other organisms. FoldEco can generate hypotheses to guide the design of new experiments. Hypothesis generation leads to system-wide questions and shows how to convert these questions to experimentally measurable quantities, such as changes in protein concentrations with chaperone or protease levels, which can then be used to improve our current understanding of proteostasis and refine the model. A web version of FoldEco is available at http://foldeco.scripps.edu.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 48 条
  • [1] DnaJ recruits DnaK to protein aggregates
    Acebron, Sergio P.
    Fernandez-Saiz, Vanesa
    Taneva, Stefka G.
    Moro, Fernando
    Muga, Arturo
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (03) : 1381 - 1390
  • [2] DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface
    Acebron, Sergio P.
    Martin, Ianire
    del Castillo, Urko
    Moro, Fernando
    Muga, Arturo
    [J]. FEBS LETTERS, 2009, 583 (18) : 2991 - 2996
  • [3] Chaperonin chamber accelerates protein folding through passive action of preventing aggregation
    Apetri, Adrian C.
    Horwich, Arthur L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) : 17351 - 17355
  • [4] Adapting proteostasis for disease intervention
    Balch, William E.
    Morimoto, Richard I.
    Dillin, Andrew
    Kelly, Jeffery W.
    [J]. SCIENCE, 2008, 319 (5865) : 916 - 919
  • [5] Calloni G., 2012, CELL REPORTS
  • [6] Chaperonin-Catalyzed Rescue of Kinetically Trapped States in Protein Folding
    Chakraborty, Kausik
    Chatila, Manal
    Sinha, Jyoti
    Shi, Qiaoyun
    Poschner, Bernhard C.
    Sikor, Martin
    Jiang, Guoxin
    Lamb, Don C.
    Hartl, F. Ulrich
    Hayer-Hartl, Manajit
    [J]. CELL, 2010, 142 (01) : 112 - 122
  • [7] Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL
    Chapman, Eli
    Farr, George W.
    Usaite, Renata
    Furtak, Krystyna
    Fenton, Wayne A.
    Chaudhuri, Tapan K.
    Hondorp, Elise R.
    Matthews, Rowena G.
    Wolf, Sharon G.
    Yates, John R.
    Pypaert, Marc
    Horwich, Arthur L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (43) : 15800 - 15805
  • [8] Protein misfolding, functional amyloid, and human disease
    Chiti, Fabrizio
    Dobson, Christopher M.
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 : 333 - 366
  • [9] Chaperone-assisted folding of newly synthesized proteins in the cytosol
    Deuerling, E
    Bukau, B
    [J]. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2004, 39 (5-6) : 261 - 277
  • [10] Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery
    Diamant, S
    Ben-Zvi, AP
    Bukau, B
    Goloubinoff, P
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) : 21107 - 21113