A Reciprocity Formula for a Cotangent Sum

被引:34
作者
Bettin, Sandro [1 ]
Conrey, John Brian [1 ,2 ]
机构
[1] Univ Bristol, Bristol, Avon, England
[2] Amer Inst Math, Palo Alto, CA USA
基金
美国国家科学基金会;
关键词
RIEMANN ZETA-FUNCTION; PERIOD FUNCTIONS; NYMAN;
D O I
10.1093/imrn/rns211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the cotangent sum c(h/k)=-Sigma(k-1)(a=1) a/k cot pi ah/k and prove that it satisfies hc(h/k) + c(k/h) - 1/pi k = g(h/k), where g is a function which is analytic on the complex plane minus the negative real axis. The sum arises in connection with the Nyman-Beurling approach to the Riemann hypothesis.
引用
收藏
页码:5709 / 5726
页数:18
相关论文
共 11 条
[1]  
Báez-Duarte L, 2005, RAMANUJAN J, V9, P215, DOI 10.1007/s11139-005-0834-4
[2]   On Nyman, Beurling and Baez-Duarte's Hilbert space reformulation of the Riemann hypothesis [J].
Bagchi, B .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (02) :137-146
[3]  
BALASUBRAMANIAN R, 1985, J REINE ANGEW MATH, V357, P161
[4]   Period functions and cotangent sums [J].
Bettin, Sandro ;
Conrey, Brian .
ALGEBRA & NUMBER THEORY, 2013, 7 (01) :215-242
[5]   MORE THAN 2/5 OF THE ZEROS OF THE RIEMANN ZETA-FUNCTION ARE ON THE CRITICAL LINE [J].
CONREY, JB .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 399 :1-26
[6]  
IWANIEC H, 1980, J LOND MATH SOC, V22, P39
[7]   Beurling-Nyman criterion for Riemann hypothesis: Numerical aspects [J].
Landreau, B ;
Richard, F .
EXPERIMENTAL MATHEMATICS, 2002, 11 (03) :349-360
[8]   Period functions for Maass wave forms. I [J].
Lewis, J ;
Zagier, D .
ANNALS OF MATHEMATICS, 2001, 153 (01) :191-258
[9]  
Rademacher H., 1973, GRUNDLEHREN MATH WIS, V169
[10]  
Vasyunin V. I., 1996, ST PETERSB MATH J, V7, P405