Euler-Frobenius numbers

被引:9
作者
Gawronski, Wolfgang [1 ]
Neuschel, Thorsten [1 ]
机构
[1] Univ Trier, Dept Math, D-54286 Trier, Germany
关键词
Eulerian numbers; Euler-Frobenius polynomials; local central limit expansions; rounding errors; JONQUIERE POLYNOMIALS; ZEROS; SERIES; ROOTS;
D O I
10.1080/10652469.2012.762362
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
These numbers are defined as the coefficients of the Euler-Frobenius polynomials P-n,P-lambda(Z) = Sigma(n)(l-0) A(n,l)(lambda)Z(l), which usually are introduced via the rational function expansion Sigma(infinity)(nu-0) (nu + lambda)(n)Z(nu) = P-n,P-lambda(Z)/(1-Z)(n+1) n being a nonnegative integer and lambda is an element of [0, 1). The special case A(n,l)(0) is known from combinatorics (Eulerian numbers) and the general one A(n,l)(lambda) occurs, for example, in approximation theory, summability, and rounding error analysis. By supplementing and extending known results on Eulerian numbers, various theorems for the Euler-Frobenius numbers A(n,l)(lambda) and related quantities are established including unimodality, monotonicity properties, and asymptotic expansions given by a local central limit theorem.
引用
收藏
页码:817 / 830
页数:14
相关论文
共 34 条
  • [11] GAWRONSKI W, 1984, MICH MATH J, V31, P275
  • [12] ON THE ZEROS OF LERCHS TRANSCENDENTAL FUNCTION WITH REAL PARAMETERS
    GAWRONSKI, W
    STADTMULLER, U
    [J]. JOURNAL OF APPROXIMATION THEORY, 1988, 53 (03) : 354 - 364
  • [13] Henrici P., 1991, Applied and Computational Complex Analysis, V2
  • [14] Hille E., 1977, ANAL FUNCTION THEORY, VII
  • [15] Kurtz DC., 1972, J COMB THEORY A, V13, P135, DOI DOI 10.1016/0097-3165(72)90017-9
  • [16] Lerch M., 1887, Acta Math, V11, P19, DOI [DOI 10.1007/BF02612318, 10.1007/BF02612318]
  • [17] Magnus Wilhelm, 1966, Die Grundlehren der mathematischen Wissenschaften, V52
  • [18] EVALUATION OF INTEGRAL IN(B) [ 2/PI INFINITY O (SINX/X)NCOS(BX)DX
    MEDHURST, RG
    ROBERTS, JH
    [J]. MATHEMATICS OF COMPUTATION, 1965, 19 (89) : 113 - &
  • [19] Petrov V. V., 1975, ERGEBNISSE MATH IHRE, V82
  • [20] PEYERIMHOFF A, 1966, MICH MATH J, V13, P193