Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants

被引:111
作者
Alvim, C. Bretas [1 ]
Bes-Pia, M. A. [1 ]
Mendoza-Roca, J. A. [1 ]
机构
[1] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental, Camino Vera S-N, Valencia 46022, Spain
关键词
Activated sludge; Effluents; Microfiber; Microplastic; Wastewater treatment plant; MARINE-ENVIRONMENT; FATE; POLLUTION; FIBERS; QUANTIFICATION; COAGULATION; PARTICLES; REMOVAL; SOILS;
D O I
10.1016/j.cej.2020.126293
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although wastewater treatment plants can retain a high percentage of microplastics (MP) arriving at the facilities, no method for extracting and characterizing these microparticles has been still standardized in these units. This study investigated three protocols of chemical digestion, prior to analysis of microplastics, one directed to the effluents, using peroxidation, and two for activated sludge (peroxidation and Fenton). The samples (primary effluent, secondary effluent and activated sludge) were collected from a wastewater treatment plant (WWTP) located in Valencia (Spain). In addition, four common types of polymers (Low density polyethylene-LDPE, Polypropylene-PP, Polystyrene-PS and Polyethylene terephthalate-PET) were used to assess the influence of reagent exposure on microparticle integrity. Peroxidation was effective in treating the studied effluents (primary and secondary) and was also identified as the ideal protocol for activated sludge. The analysis showed that the use of H2O2 does not compromise the identification of the polymers evaluated by FTIR and also significantly reduced the concentration of suspended solids, resulting in an efficient visual separation of the microparticles. After been properly separated, the microparticles were characterized according to their size, colour and shape, and a fraction submitted to identification by mu-ATR-FTIR/ATR-FTIR. In all samples, a high presence of microfibers (MF) was observed, corresponding to more than 90% of the microparticles. However, in relation to secondary effluents, only 9% of these MF were identified as plastics, the remaining ones corresponded to cotton. The fragments found in the samples were classified as secondary in origin, and were mainly PE and PP, lower than 1 mm size.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment [J].
Almroth, Bethanie M. Carney ;
Astrom, Linn ;
Roslund, Sofia ;
Petersson, Hanna ;
Johansson, Mats ;
Persson, Nils-Krister .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (02) :1191-1199
[2]   Effect of deflocculation on the efficiency of sludge reduction by Fenton process [J].
Amudha, V. ;
Kavitha, S. ;
Fernandez, C. ;
Adishkumar, S. ;
Banu, J. Rajesh .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (19) :19281-19291
[3]   Microplastics in the marine environment [J].
Andrady, Anthony L. .
MARINE POLLUTION BULLETIN, 2011, 62 (08) :1596-1605
[4]  
[Anonymous], 1999, INFRARED RAMAN SPECT, DOI DOI 10.1007/978-94-011-4421-6_46
[5]   Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J].
Auta, H. S. ;
Emenike, C. U. ;
Fauziah, S. H. .
ENVIRONMENT INTERNATIONAL, 2017, 102 :165-176
[6]   Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater [J].
Badawy, M. I. ;
Ali, M. E. M. .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 136 (03) :961-966
[7]   Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors [J].
Bayo, Javier ;
Olmos, Sonia ;
Lopez-Castellanos, Joaquin .
CHEMOSPHERE, 2020, 238
[8]   Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology [J].
Bouwmeester, Hans ;
Hollman, Peter C. H. ;
Peters, Ruud J. B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (15) :8932-8947
[9]   Wastewater treatment plant as microplastics release source - Quantification and identification techniques [J].
Bretas Alvim, C. ;
Mendoza-Roca, J. A. ;
Bes-Pia, A. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 255
[10]   Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks [J].
Browne, Mark Anthony ;
Crump, Phillip ;
Niven, Stewart J. ;
Teuten, Emma ;
Tonkin, Andrew ;
Galloway, Tamara ;
Thompson, Richard .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (21) :9175-9179