ON THE OPTIMALITY OF THE FCC LATTICE FOR SOFT SPHERE PACKING

被引:7
|
作者
Edelsbrunner, Herbert [1 ]
Iglesias-Ham, Mabel [1 ]
机构
[1] IST Austria, A-3400 Klosterneuburg, Austria
基金
奥地利科学基金会;
关键词
packing and covering; soft density; lattice configurations; Voronoi domains; Brillouin zones; DOMAINS;
D O I
10.1137/16M1097201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by biological questions, we study configurations of equal spheres that neither pack nor cover. Placing their centers on a lattice, we define the soft density of the configuration by penalizing multiple overlaps. Considering the 1-parameter family of diagonally distorted 3-dimensional integer lattices, we show that the soft density is maximized at the FCC lattice.
引用
收藏
页码:750 / 782
页数:33
相关论文
共 50 条
  • [31] THE OPTIMAL PACKING OF CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (04) : 325 - 349
  • [32] Packing of incongruent circles on the sphere
    Florian, A
    MONATSHEFTE FUR MATHEMATIK, 2001, 133 (02): : 111 - 129
  • [33] Stable quasicrystalline sphere packing
    Natl. Inst. of Std. and Technology, Ceramics Division, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520, United States
    不详
    不详
    Philos Mag Lett, 7 (441-448):
  • [34] Online circle and sphere packing
    Lintzmayer, Carla Negri
    Miyazawa, Flavio Keidi
    Xavier, Eduardo Candido
    THEORETICAL COMPUTER SCIENCE, 2019, 776 : 75 - 94
  • [35] Packing of Incongruent Circles on the Sphere
    August Florian
    Monatshefte für Mathematik, 2001, 133 : 111 - 129
  • [36] Multiple packing of the Euclidean sphere
    Institute for Information Transmission Problems, Russian Academy of Sciences, 101447, Moscow, Russia
    IEEE Trans. Inf. Theory, 4 (1334-1337):
  • [37] Sphere packing and quantum gravity
    Hartman, Thomas
    Mazac, Dalimil
    Rastelli, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [38] Stable quasicrystalline sphere packing
    Cockayne, E
    Mihalkovic, M
    PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (07) : 441 - 448
  • [39] EXISTENCE CONDITIONS OF HOMOGENEOUS SPHERE PACKING FOR CUBIC LATTICE COMPLEXES WITH LESS THAN 3 DEGREES OF FREEDOM
    FISCHER, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1973, 138 : 129 - 146
  • [40] The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing
    van Sosin, Boris
    Rodin, Daniil
    Sliusarenko, Hanna
    Barton, Michael
    Elber, Gershon
    COMPUTER-AIDED DESIGN, 2021, 132