A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF A SHAPE OPTIMIZATION PROBLEM

被引:15
作者
Kiniger, Bernhard [1 ]
Vexler, Boris [1 ]
机构
[1] Tech Univ Munich, Fak Math, Lehrstuhl Optimale Steuerung, D-85748 Garching, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 06期
基金
奥地利科学基金会;
关键词
Shape optimization; existence and convergence of approximate solutions; error estimates; finite elements; LIPSCHITZ-DOMAINS; ELLIPTIC-EQUATIONS; DESIGN-PROBLEMS; APPROXIMATION;
D O I
10.1051/m2an/2013086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a model shape optimization problem. The state variable solves an elliptic equation on a domain with one part of the boundary described as the graph of a control function. We prove higher regularity of the control and develop a priori error analysis for the finite element discretization of the shape optimization problem under consideration. The derived a priori error estimates are illustrated on two numerical examples.
引用
收藏
页码:1733 / 1763
页数:31
相关论文
共 26 条
[1]  
Alkhutov Y. A., 1992, DIFF URAVN, V28, P917
[2]  
Ambrosetti A, 1993, CAMBRIDGE STUDIES AD, V34
[3]  
[Anonymous], 1985, MONOGRAPHS STUDIES M
[4]  
[Anonymous], REV ROUM MATH PURES
[5]  
[Anonymous], 1964, Czechoslovak Math. J
[6]  
[Anonymous], FINITE ELEMENTE
[7]  
[Anonymous], 1996, FINITE ELEMENT APPRO
[8]  
[Anonymous], 1992, SPRINGER SERIES COMP
[9]  
[Anonymous], 1992, DIFF URAVN
[10]  
[Anonymous], 2003, ADV DESIGN CONTROL