Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes

被引:171
作者
Lu, Xunyu [1 ]
Zhao, Chuan [1 ]
机构
[1] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
关键词
WATER OXIDATION; CO3O4; NANOCRYSTALS; DURABILITY; STABILITY; GRAPHENE; SUPPORT;
D O I
10.1039/c3ta12912h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline cobalt oxide nanoparticles have been densely and strongly anchored onto mildly oxidized multiwalled carbon nanotubes (Co3O4/mMWCNT) and applied as electrocatalysts for highly efficient water oxidation. The hybrid catalyses oxygen evolution reactions (OER) with an onset potential of 1.51 V vs. RHE and an overpotential only of 390 mV to achieve a current density of 10 mA cm(-2). The Co3O4/mMWCNT catalyst exhibits high Faraday efficiency (>99%) and long-term stability (>25 h) during bulk electrolysis of water. A range of carbon nanostructures including MWCNTs, single-walled CNTs (SWCNTs), and graphene, and CNTs of different oxidation states have been prepared and applied as substrates for Co3O4 nanocrystals and their performance is compared to reveal the interrelationship between the nanocarbon structure, surface functionalization and charge transport for rational design of OER catalysts. Furthermore, a range of techniques has been utilized to characterize the stability of MWCNT substrates during water oxidation. Importantly, it is found that the MWCNTs in the composite can sustain the harsh oxidative environment of water oxidation, with no carbon corrosion detected.
引用
收藏
页码:12053 / 12059
页数:7
相关论文
共 38 条
[1]   Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution [J].
Chen, Ming-Liang ;
Oh, Won-Chun .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-8
[2]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[3]   Carbon Nanomaterials for Advanced Energy Conversion and Storage [J].
Dai, Liming ;
Chang, Dong Wook ;
Baek, Jong-Beom ;
Lu, Wen .
SMALL, 2012, 8 (08) :1130-1166
[4]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[5]   Confined propagation of covalent chemical reactions on single-walled carbon nanotubes [J].
Deng, Shunliu ;
Zhang, Yin ;
Brozena, Alexandra H. ;
Mayes, Maricris Lodriguito ;
Banerjee, Parag ;
Chiou, Wen-An ;
Rubloff, Gary W. ;
Schatz, George C. ;
Wang, YuHuang .
NATURE COMMUNICATIONS, 2011, 2
[6]   A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties [J].
Dong, Yuming ;
He, Kun ;
Yin, Lin ;
Zhang, Aimin .
NANOTECHNOLOGY, 2007, 18 (43)
[7]   Carbon Nanotube-Inorganic Hybrids [J].
Eder, Dominik .
CHEMICAL REVIEWS, 2010, 110 (03) :1348-1385
[8]   Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis [J].
Esswein, Arthur J. ;
McMurdo, Meredith J. ;
Ross, Phillip N. ;
Bell, Alexis T. ;
Tilley, T. Don .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :15068-15072
[9]  
Fillol JL, 2011, NAT CHEM, V3, P807, DOI [10.1038/NCHEM.1140, 10.1038/nchem.1140]
[10]   Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity [J].
Gerken, James B. ;
McAlpin, J. Gregory ;
Chen, Jamie Y. C. ;
Rigsby, Matthew L. ;
Casey, William H. ;
Britt, R. David ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (36) :14431-14442