Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function

被引:35
作者
Baker, EmilyClare P. [1 ]
Hittinger, Chris Todd [1 ,2 ]
机构
[1] Univ Wisconsin, JF Crow Inst Study Evolut, Wisconsin Energy Inst, Lab Genet Microbiol,Doctoral Training Program,Gen, Madison, WI 53706 USA
[2] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
ALPHA-GLUCOSIDE TRANSPORTER; LAGER BREWING YEAST; FERMENTATION PERFORMANCE; MOLECULAR ANALYSIS; GENOME SEQUENCE; GENE FAMILIES; STRAINS; MALTOSE; IDENTIFICATION; GENERATION;
D O I
10.1371/journal.pgen.1007786
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
At the molecular level, the evolution of new traits can be broadly divided between changes in gene expression and changes in protein-coding sequence. For proteins, the evolution of novel functions is generally thought to proceed through sequential point mutations or recombination of whole functional units. In Saccharomyces, the uptake of the sugar maltotriose into the cell is the primary limiting factor in its utilization, but maltotriose transporters are relatively rare, except in brewing strains. No known wild strains of Saccharomyces eubayanus, the cold-tolerant parent of hybrid lager-brewing yeasts (Saccharomyces cerevisiae x S. eubayanus), are able to consume maltotriose, which limits their ability to fully ferment malt extract. In one strain of S. eubayanus, we found a gene closely related to a known maltotriose transporter and were able to confer maltotriose consumption by overexpressing this gene or by passaging the strain on maltose. Even so, most wild strains of S. eubayanus lack native maltotriose transporters. To determine how this rare trait could evolve in naive genetic backgrounds, we performed an adaptive evolution experiment for maltotriose consumption, which yielded a single strain of S. eubayanus able to grow on maltotriose. We mapped the causative locus to a gene encoding a novel chimeric transporter that was formed by an ectopic recombination event between two genes encoding transporters that are unable to import maltotriose. In contrast to classic models of the evolution of novel protein functions, the recombination breakpoints occurred within a single functional domain. Thus, the ability of the new protein to carry maltotriose was likely acquired through epistatic interactions between independently evolved substitutions. By acquiring multiple mutations at once, the transporter rapidly gained a novel function, while bypassing potentially deleterious intermediate steps. This study provides an illuminating example of how recombination between paralogs can establish novel interactions among substitutions to create adaptive functions. Author summary Hybrids of the yeasts Saccharomyces cerevisiae and Saccharomyces eubayanus (lager-brewing yeasts) dominate the modern brewing industry. S. cerevisiae, also known as baker's yeast, is well-known for its role in industry and scientific research. Less well recognized is S. eubayanus, which was only discovered as a pure species in 2011. While most lager-brewing yeasts rapidly and completely utilize the important brewing sugar maltotriose, no strain of S. eubayanus isolated to date is known to do so. Despite being unable to consume maltotriose, we identified one strain of S. eubayanus carrying a gene for a functional maltotriose transporter, although most strains lack this gene. During an adaptive evolution experiment, a strain of S. eubayanus without native maltotriose transporters evolved the ability to grow on maltotriose. Maltotriose consumption in the evolved strain resulted from a chimeric transporter that arose by shuffling genes encoding parent proteins that were unable to transport maltotriose. Traditionally, functional chimeric proteins are thought to evolve by shuffling discrete functional domains or modules, but the breakpoints in the chimera studied here occurred within the single functional module of the protein. These results support the less well-recognized role of shuffling duplicate gene sequences to generate novel proteins with adaptive functions.
引用
收藏
页数:23
相关论文
共 115 条
[1]   Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces [J].
Alexander, William G. ;
Peris, David ;
Pfannenstiel, Brandon T. ;
Opulente, Dana A. ;
Kuang, Meihua ;
Hittinger, Chris Todd .
FUNGAL GENETICS AND BIOLOGY, 2016, 89 :10-17
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease [J].
Alves, Sergio L., Jr. ;
Herberts, Ricardo A. ;
Hollatz, Claudia ;
Trichez, Debora ;
Miletti, Luiz C. ;
de Araujo, Pedro S. ;
Stambuk, Boris U. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (05) :1494-1501
[4]  
[Anonymous], APPL PLANT SCI
[5]  
[Anonymous], FEMS YEAST RES
[6]   The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts [J].
Baker, EmilyClare ;
Wang, Bing ;
Bellora, Nicolas ;
Peris, David ;
Hulfachor, Amanda Beth ;
Koshalek, Justin A. ;
Adams, Marie ;
Libkind, Diego ;
Hittinger, Chris Todd .
MOLECULAR BIOLOGY AND EVOLUTION, 2015, 32 (11) :2818-2831
[7]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[8]   Structure and function of facilitative sugar transporters [J].
Barrett, MP ;
Walmsley, AR ;
Gould, GW .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (04) :496-502
[9]   The generation of new protein functions by the combination of domains [J].
Bashton, Matthew ;
Chothia, Cyrus .
STRUCTURE, 2007, 15 (01) :85-99
[10]   A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes [J].
Bergstroem, Anders ;
Simpson, Jared T. ;
Salinas, Francisco ;
Barre, Benjamin ;
Parts, Leopold ;
Zia, Amin ;
Nguyen Ba, Alex N. ;
Moses, Alan M. ;
Louis, Edward J. ;
Mustonen, Ville ;
Warringer, Jonas ;
Durbin, Richard ;
Liti, Gianni .
MOLECULAR BIOLOGY AND EVOLUTION, 2014, 31 (04) :872-888