A Multivariable Prediction Model for Mortality in Individuals Admitted for Heart Failure

被引:8
|
作者
Bowen, Garrett S. [1 ,2 ]
Diop, Michelle S. [1 ,2 ]
Jiang, Lan [2 ]
Wu, Wen-Chih [2 ,3 ,4 ]
Rudolph, James L. [2 ,3 ,4 ]
机构
[1] Brown Univ, Primary Care & Populat Med Program, Warren Alpert Med Sch, Providence, RI 02912 USA
[2] Providence Vet Affairs Med Ctr, Ctr Innovat Longterm Serv & Supports, Providence, RI USA
[3] Brown Univ, Dept Med, Warren Alpert Med Sch, Providence, RI 02912 USA
[4] Brown Univ, Ctr Gerontol, Sch Publ Hlth, Providence, RI 02912 USA
关键词
heart failure; prediction; mortality; patient-centered outcomes research; palliative care; PALLIATIVE CARE; COMORBIDITY MEASURES; RISK PREDICTION; UNITED-STATES; COMMUNICATION; SCORE; PATHOPHYSIOLOGY; HOSPITALIZATION; COMANAGEMENT; METAANALYSIS;
D O I
10.1111/jgs.15319
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
OBJECTIVES: To derive and validate a 30-day mortality clinical prediction rule for heart failure based on admission data and prior healthcare usage. A secondary objective was to determine the discriminatory function for mortality at 1 and 2 years. DESIGN: Observational cohort. SETTING: Veterans Affairs inpatient medical centers (n = 124). PARTICIPANTS: The derivation (2010-12; n = 36,021) and validation (2013-15; n = 30,364) cohorts included randomly selected veterans admitted for HF exacerbation (mean age 7111; 98% male). MEASUREMENTS: The primary outcome was 30-day mortality. Secondary outcomes were 1- and 2-year mortality. Candidate variables were drawn from electronic medical records. Discriminatory function was measured as the area under the receiver operating characteristic curve. RESULTS: Thirteen risk factors were identified: age, ejection fraction, mean arterial pressure, pulse, brain natriuretic peptide, blood urea nitrogen, sodium, potassium, more than 7 inpatient days in the past year, metastatic disease, and prior palliative care. The model stratified participants into low- (1%), intermediate- (2%), high- (5%), and very high- (15%) mortality risk groups (C-statistic = 0.72, 95% confidence interval (CI) = 0.71-0.74). These findings were confirmed in the validation cohort (C-statistic = 0.70, 95% CI = 0.68-0.71). Subgroup analysis of age strata confirmed model discrimination. CONCLUSION: This simple prediction rule allows clinicians to risk-stratify individuals on admission for HF using characteristics captured in electronic medical record systems. The identification of high-risk groups allows individuals to be targeted for discussion of goals and treatment.
引用
收藏
页码:902 / 908
页数:7
相关论文
共 50 条
  • [1] A Model for the Prediction of Mortality and Hospitalization in Chinese Heart Failure Patients
    Zhuang, Bo
    Shen, Ting
    Li, Dejie
    Jiang, Yumei
    Li, Guanghe
    Luo, Qian
    Jin, Yishan
    Shan, Ziwei
    Che, Lin
    Wang, Lemin
    Zheng, Liang
    Shen, Yuqin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [2] Evaluation of machine learning methods for prediction of heart failure mortality and readmission: meta-analysis
    Hajishah, Hamed
    Kazemi, Danial
    Safaee, Ehsan
    Amini, Mohammad Javad
    Peisepar, Maral
    Tanhapour, Mohammad Mahdi
    Tavasol, Arian
    BMC CARDIOVASCULAR DISORDERS, 2025, 25 (01):
  • [3] Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure
    Voors, Adriaan A.
    Ouwerkerk, Wouter
    Zannad, Faiez
    van Veldhuisen, Dirk J.
    Samani, Nilesh J.
    Ponikowski, Piotr
    Ng, Leong L.
    Metra, Marco
    ter Maaten, Jozine M.
    Lang, Chim C.
    Hillege, Hans L.
    van der Harst, Pim
    Filippatos, Gerasimos
    Dickstein, Kenneth
    Cleland, John G.
    Anker, Stefan D.
    Zwinderman, Aeilko H.
    EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 (05) : 627 - 634
  • [4] Patterns of Palliative Care Referral in Patients Admitted With Heart Failure Requiring Mechanical Ventilation
    Wiskar, Katie J.
    Celi, Leo Anthony
    McDermid, Robert C.
    Walley, Keith R.
    Russell, James A.
    Boyd, John H.
    Rush, Barret
    AMERICAN JOURNAL OF HOSPICE & PALLIATIVE MEDICINE, 2018, 35 (04): : 620 - 626
  • [5] Association between diabetes and mortality in elderly patients admitted for a first episode of acute heart failure
    Formiga, Francesc
    Chivite, David
    Montero, Abelardo
    Petit, Irene
    Moreno-Gonzalez, Rafael
    Franco, Jonathan
    Corbella, Xavier
    GERIATRICS & GERONTOLOGY INTERNATIONAL, 2018, 18 (04) : 554 - 560
  • [6] Prediction of mode of death in heart failure the seattle heart failure model
    Mozaffarian, Dariush
    Anker, Stefan D.
    Anand, Inder
    Linker, David T.
    Sullivan, Mark D.
    Cleland, John G. F.
    Carson, Peter E.
    Maggioni, Aldo P.
    Mann, Douglas L.
    Pitt, Bertram
    Poole-Wilson, Philip A.
    Levy, Wayne C.
    CIRCULATION, 2007, 116 (04) : 392 - 398
  • [7] A Prediction Model for Short Length of Stay among Patients Admitted with Congestive Heart Failure
    Ronno, Eric L.
    Gavin, Michael C.
    Fleming, Lisa M.
    Mukamal, Kenneth
    Chang, James D.
    CIRCULATION, 2012, 126 (21)
  • [8] Prediction of mortality in heart failure by machine learning. Comparison with statistical modeling
    Scrutinio, Domenico
    Amitrano, Federica
    Guida, Pietro
    Coccia, Armando
    Pagano, Gaetano
    D'addio, Gianni
    Passantino, Andrea
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2025, 133 : 106 - 112
  • [9] External validation of the EFFECT mortality prediction scale in patients admitted for acute heart failure in Araba, Spain
    Goya-Lirio, S.
    Hernando-Llorens, M.
    de Garayo-Diaz, S. Garcia
    Regalado-de Los Cobos, J.
    REVISTA CLINICA ESPANOLA, 2024, 224 (06): : 379 - 386
  • [10] Prognostic factors on mortality in patients admitted to hospital with heart failure
    Valdivia-Marchal, M.
    Zambrana-Luque, J. L.
    Girela-Lopez, E.
    Font-Ugalde, P.
    Salcedo-Sanchez, M. C.
    Zambrana-Garcia, J. L.
    ANALES DEL SISTEMA SANITARIO DE NAVARRA, 2020, 43 (01) : 57 - 67