In SilicoTools and Approaches for the Prediction of Functional and Structural Effects of Single-Nucleotide Polymorphisms on Proteins: An Expert Review

被引:30
作者
Yazar, Metin [1 ,2 ]
Ozbek, Pemra [1 ]
机构
[1] Marmara Univ, Dept Bioengn, TR-34722 Istanbul, Turkey
[2] Istanbul Okan Univ, Dept Genet & Bioengn, Istanbul, Turkey
关键词
bioinformatics; SNP; proteomics; nonsynonymous single-nucleotide polymorphisms; in silicotools; human genetic variation; AMINO-ACID SUBSTITUTIONS; GENETIC-VARIATION; MOLECULAR-DYNAMICS; STABILITY CHANGES; WEB SERVER; MUTATIONS; DISEASE; DATABASE; VARIANTS; SEQUENCE;
D O I
10.1089/omi.2020.0141
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-nucleotide polymorphisms (SNPs) are single-base variants that contribute to human biological variation and pathogenesis of many human diseases. Among all SNP types, nonsynonymous single-nucleotide polymorphisms (nsSNPs) can alter many structural, biochemical, and functional features of a protein such as folding characteristics, charge distribution, stability, dynamics, and interactions with other proteins/nucleotides. These modifications in the protein structure can lead nsSNPs to be closely associated with many multifactorial diseases such as cancer, diabetes, and neurodegenerative diseases. Predicting structural and functional effects of nsSNPs with experimental approaches can be time-consuming and costly; hence, computational prediction tools and algorithms are being widely and increasingly utilized in biology and medical research. This expert review examines thein silicotools and algorithms for the prediction of functional or structural effects of SNP variants, in addition to the description of the phenotypic effects of nsSNPs on protein structure, association between pathogenicity of variants, and functional or structural features of disease-associated variants. Finally, case studies investigating the functional and structural effects of nsSNPs on selected protein structures are highlighted. We conclude that creating a consistent workflow with a combination ofin silicoapproaches or tools should be considered to increase the performance, accuracy, and precision of the biological and clinical predictions madein silico.
引用
收藏
页码:23 / 37
页数:15
相关论文
共 169 条
  • [1] In-silico Analysis of NF1 Missense Variants in ClinVar: Translating Variant Predictions into Variant Interpretation and Classification
    Accetturo, Matteo
    Bartolomeo, Nicola
    Stella, Alessandro
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [2] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [3] ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants
    Alirezaie, Najmeh
    Kernohan, Kristin D.
    Hartley, Taila
    Majewski, Jacek
    Hocking, Toby Dylan
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (04) : 474 - 483
  • [4] A map of human genome variation from population-scale sequencing
    Altshuler, David
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Collins, Francis S.
    De la Vega, Francisco M.
    Donnelly, Peter
    Egholm, Michael
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Knoppers, Bartha M.
    Lander, Eric S.
    Lehrach, Hans
    Mardis, Elaine R.
    McVean, Gil A.
    Nickerson, DebbieA.
    Peltonen, Leena
    Schafer, Alan J.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Deiros, David
    Metzker, Mike
    Muzny, Donna
    Reid, Jeff
    Wheeler, David
    Wang, Jun
    Li, Jingxiang
    Jian, Min
    Li, Guoqing
    Li, Ruiqiang
    Liang, Huiqing
    Tian, Geng
    Wang, Bo
    Wang, Jian
    Wang, Wei
    Yang, Huanming
    Zhang, Xiuqing
    Zheng, Huisong
    Lander, Eric S.
    Altshuler, David L.
    Ambrogio, Lauren
    Bloom, Toby
    Cibulskis, Kristian
    Fennell, Tim J.
    Gabriel, Stacey B.
    [J]. NATURE, 2010, 467 (7319) : 1061 - 1073
  • [5] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [6] Alzu'bi Amal Adel, 2019, Perspect Health Inf Manag, V16, p1a
  • [7] Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study
    Arshad, Maria
    Bhatti, Attya
    John, Peter
    [J]. PLOS ONE, 2018, 13 (01):
  • [8] Neural network approach to quantum-chemistry data: Accurate prediction of density functional theory energies
    Balabin, Roman M.
    Lomakina, Ekaterina I.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (07)
  • [9] Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension
    Barroso, I
    Gurnell, M
    Crowley, VEF
    Agostini, M
    Schwabe, JW
    Soos, MA
    Maslen, GL
    Williams, TDM
    Lewis, H
    Schafer, AJ
    Chatterjee, VKK
    O'Rahilly, S
    [J]. NATURE, 1999, 402 (6764) : 880 - 883
  • [10] An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms
    Bartlett, Alice I.
    Radford, Sheena E.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (06) : 582 - 588