Inhibitors of protein glycosylation or secretion change the pattern of extracellular proteins in suspension-cultured cells of Arabidopsis thaliana

被引:13
作者
Luczak, Magdalena [1 ,2 ]
Bugajewska, Alina [1 ]
Wojtaszek, Przemyslaw [1 ,2 ]
机构
[1] Adam Mickiewicz Univ, Dept Mol & Cellular Biol, PL-60371 Poznan, Poland
[2] Polish Acad Sci, Inst Bioorgan Chem, PL-61704 Poznan, Poland
关键词
Cell wall proteins; Glycosylation; Secretory pathways; Unfolded protein response; Arabidopsis; Proteomics;
D O I
10.1016/j.plaphy.2008.06.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cell walls are essential for plant development and morphogenesis. The majority of wall proteins are glycosylated, either as N- or O-glycans. Various inhibitors of glycosylation and secretion are used to determine the importance of wall proteins for the functioning of the walls. Tunicamycin is an inhibitor of the first enzyme in the N-glycosylation pathway, 3,4-dehydroproline inhibits peptidyl proline hydroxylation. and Brefeldin A is an inhibitor of vesicle trafficking, disrupting the delivery of wall polymers to the apoplast. In inhibitor-treated suspension-cultured Arabidopsis thaliana cells, qualitative and quantitative differences in the extracellular proteome were observed for both proteins secreted into medium or in the walls. Lack of O-glycosylation resulted in the selective protein loss from the extracellular compartments. Following tunicamycin treatment the secretion of additional proteins as well as ER-resident chaperones from the Hsp70 and Hsp90 families outside the protoplasts was noted. Moreover, changes in the proteolytic degradation pattern of culture filtrate proteins were also observed. Application of Brefeldin A resulted in transient and selective loss of individual proteins from the extracellular compartments of A. thaliana cell suspension. We conclude that post-translational modifications are vital for the proper functioning of wall proteins. N-glycosylation is crucial for their proper folding and stability. Extracellular compartments could also serve as a sink for improperly folded proteins during the unfolded protein response. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:962 / 969
页数:8
相关论文
共 62 条
[1]   Plasmodesmata in Arabidopsis thaliana suspension cells [J].
Bayer, E ;
Thomas, CL ;
Maule, AJ .
PROTOPLASMA, 2004, 223 (2-4) :93-102
[2]   Arabidopsis cell wall proteome defined using multidimensional protein identification technology [J].
Bayer, EM ;
Bottrill, AR ;
Walshaw, J ;
Vigouroux, M ;
Naldrett, MJ ;
Thomas, CL ;
Maule, AJ .
PROTEOMICS, 2006, 6 (01) :301-311
[3]   Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters [J].
Blee, KA ;
Wheatley, ER ;
Bonham, VA ;
Mitchell, GP ;
Robertson, D ;
Slabas, AR ;
Burrell, MM ;
Wojtaszek, P ;
Bolwell, GP .
PLANTA, 2001, 212 (03) :404-415
[4]   Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes:: Identification by mass spectrometry and bioinformatics [J].
Boudart, G ;
Jamet, E ;
Rossignol, M ;
Lafitte, C ;
Borderies, G ;
Jauneau, A ;
Esquerré-Tugayé, MT ;
Pont-Lezica, R .
PROTEOMICS, 2005, 5 (01) :212-221
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis [J].
Candiano, G ;
Bruschi, M ;
Musante, L ;
Santucci, L ;
Ghiggeri, GM ;
Carnemolla, B ;
Orecchia, P ;
Zardi, L ;
Righetti, PG .
ELECTROPHORESIS, 2004, 25 (09) :1327-1333
[7]   Pathogen elicitor-induced changes in the maize extracellular matrix proteome [J].
Chivasa, S ;
Simon, WJ ;
Yu, XL ;
Yalpani, N ;
Slabas, AR .
PROTEOMICS, 2005, 5 (18) :4894-4904
[8]  
Chivasa S, 2002, ELECTROPHORESIS, V23, P1754, DOI 10.1002/1522-2683(200206)23:11&lt
[9]  
1754::AID-ELPS1754&gt
[10]  
3.0.CO